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ABSTRACT

‘A syntactic method for the analysis of time-varying imagce potterns
is proposed and studied. This method utilizes translation schema tc
model the time-varying properties of image patterns. A syntact:c
deformation modei is first applied to transform the 1-th imaye 1nto the
(1+1)-th image of 2n image sequence. Then the concept of translelion r.
formal languuge theory 1is wused dS 4 mechsnism to characterize the
tdynamic process of the image sequence. A formulation ot stochastic
*ranslation s also presented. A generalized syntax-directeu tresx
transtation model 1s proposed to hanale high-dimensional patterns. The
qeneralized moael is compared with the conventional top-dewn ana
ottom—up tree translation models.

A traffic monitoring problem is analyzed using the proposea tree
‘ransiation mogel. Each nput image is representea as a3 tree Structure.

he proposed tree translation model is used to model the variation o1
,mage content between consecutive images. A parsing algorithm tor tree
-ranslation is applied to match moving objects (vehicles) in each parr

uf consecutive images.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

During the past two decades, there has been an increasing interest
in pattern recognition. Most of the developments in the theory and
applications of pattern recognition use the statistical approach L1-6J.
In order to represent the structural information contained in the
patterns, the syntactic or structural approach has been proposed L[7-10J.
The precision of syntactic specification provides the recognition
procedure not only the capability of classifying patterns but also the
capacity of describing patterns. Recently, the problem of time-varying
image analysis has drawn great attention {15-20J. In this research, this
prcblem will be enalyzed using syntactic method.

A syntactic pattern recognition system consists of 3 major parts:
(a) preprocessing and segmentation, (b) primitive extraction, ano (c)
syntax analysis. To analyze time-varying images, first of all, we need
to select a proper representation method. Then a syntax analysis scheme
has to be devised.

In the past, string grammar has been applied to the problem of
shape analysis and waveform analysis, tree grammar has been applied in
the problem of texture analysis, fingerprint recognition, and scene

aralysis. What's needed here 1is some description method which can be




applied to represent and analyze general time-varying image pdatterns.

1.2 Survey

1.2.1 Pattern recognition

The many different mathematical technigues used to solve pattern
recognition problems may be grouped into two general approaches; namely,
the decision-theoretic approach and the syntactic approach. In the
decision~theoretic approach, a set of characteristic measurements,
called features, are extracted from the patterns; the recognition of
each pattern is usually made by partitioning the feature space L1J. Most
of the developments in pattern recognition research during the past
fifteen years deal with the decision~theoretic approach ang 1ts
applications [1-6]. In some pattern recognition problems, the structural
information which describes each pattern 1is 1important, and the
recognition process includes not only the capability of assigning the
pattern to a particular class, but also the capacity to describe aspects
of the pattern that make it ineligible for assignment to another <class.
A typical example of this class of recognition problem i1s picture
recognition. In this class of recognition problem, the patterns under
consideration are usually quite complex and the number of features
required is often very large, which makes the 1idea of describing a
complex pattern in terms of a composition of simpler subpatterns very
attractive. In order to represent the hierarchical structural
information of each pattern, that is, a pattern described in terms of
simpler subpatterns and each simpler subpattern again described in terms

of even simpler subpatterns, etc., the syntactic approach has been

i SO




proposed [7-10]. 1ris approach draws an analogy between the structure of
patterns and the syntax of languages. Patterns are specitied as being
built up out of subpatterns in various ways of composition, just as
phrases ind sentences are built up by conceten:*ing words, &no worgs are
built up by concatensting charaecters. The simplest subpatterns core
calleg pattern primitives. The lLanguage that provides the structura:
description of patterns in terms of a set of pattern primitives and
their composition operations is sometimes called the pattern description
language. The rules governing the c¢ompositicn of primitives 1into
patterns are wusually specified by the so-called grammar of tne pettern
description iargquage.

A syntactic pattern recognition system can be consideres as
consisting of three major parts, namely, preprocessing, pattern
description or representation, and syntax analysis (Figure 1.9). Tne
functions ot preprocessing include (i) pattern encoding ana
approximatien; and (ii) filtering, restoration and enhancement.

An input pattern is first coded or approximatec by some convenient
form for further processing. Techniques of filtering, restoration or
enhancement are used to clear the noise anrd improve th2 guality of the
coded patterns. At the output of the preprocessor, presumably, we have
patterns ot reasonably ''good quality'. Each preprocessed pattern 1is then
represented by a language-like structure. This pattern representgtion
process consists of pattern segmentation and primitive extraction, In
order to represent a pattern 1in terms of its subpatterns, we must
segmentize the pattern and, in the meantime,identify the primitives 1n

it, In other words, each preprocessed pattern is segmentized into
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subpatterns and pattern primitives basec on prespecified syntactic or
composition operations, and, in turn, each subpattern is identified with
a given set of pattern primitives. At this point, each pettern 1%
representec by a4 set ¢f primitives with spec*®ied syntactic operations,
The decision whether or not the representation is syntactically correct
will be made by the "syntax analyzer" or "parser'. When performing tne
syntax analysis cr parsing, the analyzer can usually produce a complete
syntactic description, in terms of a parsing tree, of the pattern,
provided the latter is syntactically correct.

For proper representation of pattern structures, artferent
languages has been propesed. String tanguage has been appliec in the
problem of shape analysis and waveform analysis (Figure 1.2). Tree
Language has been applied 1in the problem of texture analysis,
fingerprint recconition and scene analysis (Figure 1.3). Recent Ly
attributed grammar is proposed and PEE ( primitive-extraction-embedded )

parser is desioned to increase classification performance [133.

1.2.2 Time-varying image

The various methods applied to the analysis of time-varying images
can be classifiea into two groups. Ffor research in the first group
(cross=correlation technique and image differencing techniquel), analysis
operations are conducted at image pixel level directly, while for the
second group, actual analysis starts after some features (bounaary,
etc.) have been extracted from each individual image in the Seguence.
These techniques are further described as follows:

frocg=—cnrral~tipon terhnjoue 015,18,22,41,64,65,661: Leese et al.

(181 gqive a tyoical example. They compare two successive pictures with
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the first picture being divided into systematic sections (64x64 pixels).
Then for each section, some reasonable area of the second picture is
searched for a good match to the original section. They form & cross-
correlation coeftficient wusing the fast Fourier transform on the ful.
gray values within the section. The <cross-corretation coefficient 1is
computed for each pairing of the original section with 3 candidate
section in the second picture. The candidate section which yieldas the
maximum coefficient dis chosen as the match. Then a motion vector 1s
computed as the distance and direction between the center of the
original section and the center of the match section. The moticn vector
is essentialiy assigned to the section, not to any object within the
section.

Image differencing technigue £23,30,31,46,47,67,68,69,703: In
[46,47], the 1image differencing technique 1is applied to find the
variation between two images of the same scene. The 1mages are
carefully aligned by both spatial coordinates and gray value. The
spatial registration is done by considering one image as the reference
image and then distorting the other image until they are aligned. The
distortion is a tocalized procedure which operates on subregions of the
images. Cross~correlation technigue 1is used to compute the amount of
distortion necessary to align a subregion with 1its corresponding
subregion 1in the reference image. After the spatial registration has
been completed, a point-~to-point subtraction process generates a thirg
image which displays the variation between the given images.

Limb and Murphy (671 report a hardware implementation ot

subtractive method. In addition to the subtraction process between the




corresponding pixels of two consecutive images, within-image comparisons
are made among pixels and their suitable neighbors. The within-image
comparisons are used to normalize the between-image comparisons. These
comparisons are essentially the absolute differences of the pixel gray
values and are summed over the entire image. This yielas a velocity
estimate for the image as a whole and not for any specific object.

The research work in group 11 incluaes
(37,39,42,43,48,49,72,73,74,771: Chow and Aggarwal L43] develop an

algorithm to track moving objects 1in an 1image sequence. After

preprocessing of an image, they build a model which consists of the
objects extracted from the image. Each object is represented as a set
of feature values: area, centroid position, etc. The matching process
of moving objects between consecutive images is performed through the
comparison of these feature values. After the matching, the model is
then updated with new information. The analyzed results include the
number of moving objects and their corresponding velocities in the whole
sequence. Other similar works include [37,39,42,49,77].

Recently O'Rourke and Badler report a system for the analysis of
human motion images L[73]. The model for human body is composed of
segments and joints. A joint is a unique point connecting two segments.
A segment is an abstract rigid body with an associated embeaaed
coordinate system. The surface of each segment 1is defined by a
collection of graphical primitives, called spheres, located at fixed
positions within the segment's coordinate system. There are constraints

governing the relations between different parts of the body. These

constraints arise from the structure of the body, gravity effect, etc.
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Based on the analysis of the past images, the system forms & motion
description which 1is comprised of a set of piecewise linear functions.
Each linear function describes the location-time relation of a specific
feature point. The model is updated with new information. The system
then predicts searching regions of the parts for the analysis of npext
image. If the prediction fails for a specific part, then the system
terminates the analysis process for this part and works for others
hoping that the information from succeeding images will resolve the
confusion. The model presented here 1is essentially an 4attributed
grammar, but with a slightly different form. Since it is focused on a
specific object-~human body, composed of 24 segments and 25 joints, the
dynamic process of the image sequence is represented as a Structure-
preserved variation of attributed language. In other words, each image
is represented by a set of feature values and the whole sequence is
represented by a set of piecewise (inear equations. Besides, it is not
known whether or not the relaxation process of uncertain part will
eventually be stable, which is the common problem in Yachida et al. L771]
and Tsotsos et al. L7«].

Tsotsos et al., (747 report a system for the analysis of the image
sequence of Lleft wventricular wall motion. They propose a way to

represent motion concepts based on the semantic network theory. Each

motion concept 1is associated with and defined by a "frame." A frame is
definable by the user. Frames have an arbitrary number of "slots" that
form their parts. Slots come in two varieties: "prerequisite’” and

"dependent.'" Prerequisite slots specify concepts that must be observea

before the trame can be instantiated, while dependents provide
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additional semantic components that are included along with the frame
concept on instantiation. For example, the concept of "area change" anag
"contract" is defined as follows:
frame area_change with
prerequisites
subj: contractile object;
time_int: time_interval;
start_a: area_value;
end a: area value;
end
frame contract is_a area_change with
prerequisites
start_a: such that
start_a > end a;
dependents
speed: speed v with
speed + (start_a-end_a) + time_int. duration
end

These two frames illustrate most of the ''syntactical" construct of

their representation formalism. From the viewpoint of Fu [10] and Tsai
and Fu [14], the representztion method of motion information descripea

above is essentially that: each motion concept is represented as a set

of prespecified attributes, each of which has a special meaning.
Tsotsos et al. analyze the image sequence using hypotheses—cooperation
method: uncertain parts in an image are updated using a relaxation

process (881, during which the iteration 1is not completed until a p
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convergence to stable condition is achieved. It is not sure whether or
not the 1iteration process will always Llead to convergence in every
uncertainty case.

Yachida, lkeda and Tsuji L[76] analyze the behavior of heart wall
motion by measuring the thickness of heart wall in each image. The
thickness of the heart wall is measured at a set of boundary points.
The thickness 1is determined as the distance between the points of the
internal boundary and the points of the external boundary 1intersecting
with a set of Lines perpendicular to the internal boundary. After the
feature extraction of the whole image sequence, the dynamic process of
the heart wall motion is represented as a 3-D surface map, with x—-axis
being the spatial domain, y-axis being the time domain and z-axis being
the thickness. The motion of heart wall is analyzed by observing the
surface configuration. Heintzen et al. [93] also represent the
information extracted from the heart motion images as a 3-D surface,
while Garrison et al. [90,91,92,94,95] wuse a curve (volume-time) to
represent the dynamic process.

The various research areas of time-varying 1images are briefly
described as follows:

Aerjal and sateilite images: Evaluation of aerial and satellite
image sequences is an active area in the problem of time-varying image
anatysis [15,18,20]. wWind velocities are estimated from cloud
displacements observec 1in a sequence of satellite images as regular
input data to weather forecasting. Hubert et al. (213 combine two or
more copies from a sequence of satellite images taken at 20-30 minute

intervals over a period of 2-3 hours into a film Lloop which s
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continuously projected onto a digitizing tablet. An operator selects 4
cloud feature (e.g. cyclonic vortices, cold fronts) and marks 1ts
position in the projection of initial and final frame from the filr Lloop
, using the intermediate frames to securely track the selected features.
The measured displacement of the selected feature 1is corrected for
distortion and transformed to an earth surface coordinate system. On the
hypothesis that positional changes of clouds are solely affectea by
horizontal winds, the resulting cloud feature displacement is converted
into wind velocity.

Traffic monitoring: Several investigations have been reported to
detect moving vehicles 1in sequences of film or video-films of traffic
scenes and to track their motion. A reliable solution to this problem
would not only atlow to count vehicles, but in addition enable the
identification of vehicle type (car, truck,bus ,...) and the observation
of vehicle behavior for a variety of quickly changing traftic
situations. Wolferts (22] described an 1interactive setup to measure
vehicle velocity on time-lapsed film using cross-correlation to track
their images. Onoe et al. [23] evaluated video sequences for this
purpose. Jones ([24] reported on real-time tracking of features on
vehicles in video-sequences. Jain et al. (251 used video-sequences of
traffic scenes to study the detection, isolation, tracking, and
description of moving objects.

industrial automation: Application of visual sensors to industrial
automation appears to be another area of time-varying image problems
£26]). Newmann (27] studies the tracking of an object on a simulatea

conveyor belt by instantiating 2-D relational models on straight Lline

!
}




contour approximations to images of a scene that contained a moving
object. If tracking has to be performed under real-time constraints, one
reverts to registering greyvalue or binary templates or to the
identification of a4 feature that is charac*eristic for the object in
question and can be easily jsolated within a search «&indow. uno L28l
employed such techniques on using a TV-camera to detect the position cof
bolts and reinforcement ribs on moving steel moulds in order to control
a manipulator. Jones et al. (243 1investigated real-time tracking
techniques ta study the application of fast visual feedback 10
industrial automation. Eskenazi [291 investigated a real-time tracking
capability based on greyvalue correlation by using the video sensing and
processing setup developed for the navigable robot. by simultaneously
tracking the same object in two stereo image sequences, it is able to
determine the object's 3-D trajectory. Using this technique to track a
stationary object from a moving robot, the robot's trajectory can be
determined 1in order to guide its navigation and to adjust the pan ana
tilt of a stereo camera assembly on the robot for keeping the reference
object in the field of view.

Medical applications: Medicine provides a major area for image
sequence analysis. The subtraction of X-ray images obtained before and
after injection of roentgen-opaque material into the blood enhances the
resulting difference image for interpretation by a physician.
pigitization of X-ray film images facilitates the performance of
nonlinear operations such as compensation for film characteristics
during the determination ot the difference image. Although digitized

film 1images have to be aligned prior to subtraction, relative geometric

;f
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distortions can usually be neglected. Therefore, the registration tenas
to be much less involved here than with satellite images. If an average
of several digitized pre-injection images is subtracted from a post-
injection image, image components not affected by the injection of
roentgen-opaque material can be suppressed even more effectively
£30,311.

Sequences of X=-ray images from the Lleft ventricle have bpeen
evaluated interactively by cardiologists to determine the left ventricle
volume or to search for abnormalities in ventricle wall motion. One of
the main problems consists in a reliable determination of the ventricle
outline in the X~-ray image. Chow and kaneko L30] search a suitably
enhanced digitized X-ray film image of the left ventricle for subregions
with larger greyvalue variances. For such subregions, a mixture of two
normal distributions is fitted to the corresponding greyvalue histogram,
1f an acceptable fit is obtained for a subregion a threshold is
determined which is used to classify the greyvalues of this subregion as
either interior or exterior to the left ventricle. In this way, a series
of 25 Lleft ventricular contours 1is derived automatically covering
approximately one cardiac cycle,

Injection of radiocactive nuctei 1into a peripheral vein and
subsequent recording of their decay gamma rays by a scientigraphic
camera provides another way to obtain images of the Llett wventricle.
Although these scientigraphic images offer even less contrast than good
X-ray images, Hachimura et al. L(32] were able to aetermine the Lletft
ventricular contour in such scientigraphic image sequences. By qgetailea

analysis of the left ventricular contour obtained at the end~diastole




15

and the end-systole they attempt to classify the observed lett
ventricule wall motion into a normat and an abnormal category. Based on
a time series of nine scientigraphic images observed over 100 msec
intervals after the end-diastole they =sc*inate the left ventricular
volume and plot it versus time.

A 3-D distribution of greyvalues reflecting the spatiat
configuration of organs in a living body can be determinea by
computerized tomograpny. A three layer approximation to such a
description ftfor the tnorax of a Living dog is given by Johnson et al.
{333. If position ,size and shape ot an organ varies with time as in tne
case of the Lleft wventricle, such a variation can be representec by a
time series of 3-D greyvalue distributions which can be considerec as «
four-dimensional greyvalue distribution. For this purpose, Herman ana
Liu (341 generalized a search algorithm by Liu {352 for the
determination of a 2-0 surface in a 3-D greyvalue distribution such as
obtained by 3-D computerized tomography.

Information about dynamic changes in size, shape and position on
intact working organs is of great interest not only for the detection of
abnormalities but even for a detailed understanding of their function.
This 1is not restricted to time series of 3-D greyvalue distributions as
obtained from computerized tomography. Heintzen et al. {361 emphasize
this strong connection between time sequences of single-plane X-ray
images and a better understanding of certain organ functions.

Beyond pure medical applications, the evaluation of image sequences
spreads into biophysics and biology. For example, Yachiga et al. L37.1

observe fishes swimming 1n a vat by an overhead TV-camera connected to 4

PR Ty )
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video-tape recorder to study their behavior unacer a variety of stimulid
such as lights or tones. About 8 frames per second are recordea tor
periods between 2 and 30 seconds, resulting 1in sequences of 20-250
frames. Since the images of these moving objects are usually blurrea,
temporal as well as spatial greyvalue differences are used to separate
the 1images of moving objects from those of stationary Scene components.
Results from a previous frame are used to guide the feature extraction
process in the subsequent frame. They model the essential parts ot the
scene ds it is presented in each frame and exploit such models obtainea
from neighboring - prior as well as posterior - frames to deduce
uncertain parts or reanalyze them. Davenport et al. L38] also study the
stimulus-response behavior of microorganisms whose movement in 4 wet-
slide preparation under a microscope is recorded on video tape.

Ariki et al. (39] design an elaborate interactive facility for the
analysis of image sequences. They analyze the morphogenetic movement of
a dissociated cell of Xenopus laevis, a protozoon. QOperator intervention
is required to check frame registration (low level interaction). Meaium
level interaction is employed to define a model for the object that has
to be traced throughout the 1image sequence. Such medium Level
interaction enable the evaluation of a variety of real world scenes.
Takagi et al. [40] conduct a tracking problem in which to determine the
paths of gramules in a cultivated, living pancreatic cell recorcec by
time-lapse cinemicrophotography at 1 second intervals for 5-10 minutes.
These granules carry insulin from ribosomes where it is produced to the
cell membrane. Analyzing the motijon of these granules may tnerefore

contribute to a better understanding of hormane production mechanism.
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One cf the problems in time-varying image analysis 18 the oproper
representation of information extracted from the image sequence. In
syntactic pattern recognition, o pattern 1s usually representec by 4
Linguistic notion catled « sentence, The serte _e could be a string , e
tree or a araph of pattern primitives and reiatiors, Most ot the
developments 1in syntactic pattern recognition research guring the past
two decades deal with 'static patterns' (e.g. fingerprint, character,
chromosome shape). For static patterns, given an input pattern x g&ng 4
set of pattern grammars representing different classes, parsing scheme
is applied for the «classification of input pattern. While for time-
varying patterns, after finding a proper representation, we need to not
only analyze the pattern at each single stage, but also test the

mechanism characterizing the dynamic process of the sequence.

1.3 Summary of the Contents
Chapter 2 is concerned with the time-varying pattern analysis using
a syntactic methcd. (Fcr convenience, we use TV as an abbreviation of
time-varying. In formal language theory, a translation 1s defined as o
mapping from a lLanguage Ly to another language LZ‘ 1f we consider Ly as

14 LZ as the set ot

the set cof possible patterns occurring at time t
natterns at time t2, then the relation governing the TV phenomena could
pe formuiated as a translation problem. In chapter 2, we first explore
such a transtation wusing a pattern deformation model L11] and tnen
consider the applicability of the transtation models to time-varying
pattern analysis. Furthermore, i1n terms of the translation models, we

will formulate the problem cf TV pattern analysis 3s one which <c¢dan be

solved wusing traditional method, specifically, context-free programmed
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language parsing.

In chapter 3, the concept of language translation is extended from
strings to trees using d generalized syntax-girectea model.
Conventional top-down and bottom-up tree translation mogels are comparea
with the generalized model. It 1s shown tnhat both top-down and bottom-—
up models are special cases of the generalizea model. A parsing
algorithm for this generalized tree translation mogel i1s also presentea.
A traffic monitoring experiment is described in chapter 4. Each image
of the traf:ic scene 1is divided into a set of windows which 15 tnen
represented as a tree structure. A tree transtation schema 1S appiiea
1o describe the motion of vehicles in the input image seguence. the
matching process of vehicles between consecutive 1images 1is performea
through a tree translation parsing.

Chapter 5 summarizes the results of this stuay and proposes

suggestions for further research.
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CHAPTER 2

SYNTAX OF TIME-VARYING PATTERNS

2.1 Introduction

In syntactic pattern recognition, a pattern is usually represented
by a linguistic notion called a sentence [10]. The sentence coula be g
string, a tree, or a graph of pattern primitives and relations. Most ot
the developments in syntactic pattern recognition research during the
past two aecades deal with 'static patterns” (e.g. chromosome
classification, character recognition, and fingerprint classification).
For static patterns, given an input pattern x and a set of pcttern
grammars representing different classes, error-correcting parsers are
used to classify x into orne c¢f the c¢lasses (10,111, wWwhile for Tv
patterns, given an input seguence Xgp Xop en-, We need to not only
analyze the pattern at each single stage, but also test the mechanism
characterizing the dynamic process of the sequence.

In formal languagc theory, a translation is defined as a mapping
from a language L

to another language L If we consider L1 as the set

1 2°

of possible patterns occurring at time t L2 as the set of patterns at

1[
time t2, then the relation governing the TV phenomena could bpe
formulated as a translation problem. In this chapter, we first explore

such a translation wusing a pattern deformation model L11]J and then

consider the applicability of the translation models to time-varying

— o
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pattern analysis. Furthermore, in terms of the translation moagels, we
will formulate the problem of TV pattern analysis as one which can oe
solved using traditional method, specifically, context~free programmeg

Language parsing.

2.2 Preliminaries

Definitions and notations that willL be referred to in this chapter

are summarized as follows [51-54].

Definition 2.1: Suppose that 3" is an input alphabet ana 4 is an output

. . *

alphabet. We define a translation from a Language L1 g:z: to a
— * . * * .

language L, & & as a relation T from ). to & such that the domain of

T is L1 and the range of T is L2.

Definition 2.2: A syntax-directed translation schema (SDTS for short) is

a S5-tuple T = (N,E:, a, R, 8), where

(1) N is a finite set of nonterminal symbols,

(2) X is a finite input alphabet,

(3) o is a finite output alphabet,

(4) R is a finite set of rules of the form A » «, 5, where
a e (N UE:)*, Bec (N UMY, and the nonterminals in B are a
permutation of the nonterminals in a,

(5) S is a distinguished nonterminal in N, the start symbol.

tet A + a, B be a rule. To each nonterminal of a there is an associated
identical nonterminal of 8. If a nonterminal B appears only once in a
and B, then the association is obvious. [If B appears more than once, we

use integer superscripts to indicate the association. This association
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is an intimate part of the rule. For example, n the rule

89 @50 the  three positions in 6 17cEY are

5(2)8(1)C.

S(1)

A~ C

’
associated with positions 2, 3, and 1, respectively, in The

translation detined by T, cenoted t1(T), is the set of pairs

*
CCL,y)1€8,9) ==5> (x,y), x ¢ Y and y ¢ 47D,

Definition 2.3: If T = (N, 2, 4, R, S) is an SDTS, then t(T) is called a

syntax-directed transtation (SDT). The grammar Gi = (N,2., P, S), where
P={A + afA + a, B is in R},

is called the input grammar of the SDTS T. The grammar
' 1
6 = (N, A, P, S), where P = {A +8 |JA +» qa, B is in RY 1is called the

output grammar of T.

Definition 2.4: An SDTS T = (N,3°, 4, R, S) such that in each rule

A+ a, B in R, associated nonterminals occur in the same order in a and
B is called a simple SDTS. The translation defined by a simple SDTS s

called a simple SDT.

Definition 2.5: A simple SDTS T = (N, 2:, A, R, S) such that each rule

in R 1is either of the form A » aB, aB or of the form A + a,a where
A, Be N, ae ) and a ¢ A*, is called a regular SDTS. The translation

defined by a regular SDTS is called a regular SDT.
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. . * .
Definition 2.6: For two strings, x, y ¢ Y., we define « transformation
* *
T: Y. + X such that y € T(x). The following three transformations
are introduced (543:

(1) substitution error transformation

Ts

[-=- w. bu

Jbu,, for ail a, b e 2,atb,

w,aw

1772

(2) deletion error transformation

s

waau, | === wyu,, for all a ey ,

(3) insertion error transformation

T
1
*

Wy 05 j~—= wau,, for all a ¢ ), where Wy, wy € > ‘
ExampLe_gtl: Given a sentence x = cbabdbb and a sentence y = cbbabbab,
then

Ts Ts TI
x = cbabdbb |=--- cbabbbb |--- cbabbdb |--- cbbabbdb =y .

Definition 2.7: A context-free programmed grammar (CFPG) 3s a S-tuple 6
= (N, 2, J, P, S) where

(1) N is a finite set of non-terminals,

(2) X is a finite set of terminals,

(3) S is the start symbol in N,

(4) P is a finite set of programmed productions,
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(5) J is a finite set of production Llabels.

Each production in P consists of a label red, a core production of
*

the torm A » a where AeN, o ¢ (N U P3P , and a success branch .

fielc and a failure branch field eaczh con.isting of elements from

J. (This definition allows core production to be A + A, where

A € N and X is an empty string.)

A derivation or generation in G proceeds as follows: The first
production 1is applied to the start symbol S; therefore, if proauction r :
is applied to the current sentential form y to rewrite a nonterminal A,

and 1if y contains at least one occurrence of A, then the (eftmost A 1s

rewritten by the core of production r and the next production Label s

selected from the success branch field of r; if the current sentential

form does not contain A, then the core of production r cannot be usea

and the next production label 1s selected from the failure branch fiela

of r; if the applicable branch field is empty, the derivation halts.

2.3 Formulation of TV Patterns as a CFPL
To recognize noisy syntactic patterns, various types of error
transformation models were proposed. fung and Fu ([52] proposed a
structure-preserved deformation model to handle substitution error for
string patterns. Lu and Fu (11] extended the model to include
substitution error, insertion error and deletion error, which were
introduced 1in the previous section. It is known that any pattern x can

be transformed into any other pattern y by a sequence of error

transformations. If we analyze a TV pattern Xgp Xy eme X, from the

viewpoint of deformation model, then the TV phenomena can well be
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interpreted through a sequence of properly selected error

transformations which transforms X1 into X5, X5 iNto vy, ..., and x

5’ n-1
into LI

The deformation models proposed by Fung and fu, and Lu and Fu can
be fcrmutated 1in terms of transtation schema. Consider patterns which
are described by a regular grammar. To handle substitution error, «
regutar SDTS TN, Y., A, R, S) can be constructed, where Y. = 4 is the

primitive set, R is a set of rules of the form
A + aB, bB A, B8eN, a, be)

For each rule A + aB in the regular grammar and each terminal b € 2:,
add a rule A +» aB, bB to R. To include insertion error and deletion
error, for each rule A + aB in the regular grammar, add a rule A + aB,
aB to R for each a in (Z? le:z e UI:K u{el}), where K is a parameter
and e is the empty string. For patterns which are describeo by a
context-free grammar, a simple SDTS can be constructed to model the
three types of deformation. First of all, the grammar 1is transformea
into its Greibach Normal fForm [(51]. Then the construction procedure of
a simple SDTS is similar to that of a regular translation schema except
that: For each rule A + a8 in the context-free grammar, add A + a8, aB
for each a e(XL! U 2:2 eee u TK U (e,

As far as error modeling is concerned, Lu and fu's modei can handle
any number of errors occurred. For time-varying patterns, we restrict
the number of errors no larger than K. The difference between Lu and
Fu's model and this translation model is that Lu and Fu's model hangle

errors implicitly (or recursively) while this translation model must
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cxplicitly specify the kind of errors it intends to cover. For example,
in Lu and Fu's model Ea + a and Ea + bEa recursively describe any number
of errors of inserting b in front of a, But in thic (i anslation model,
a translation rule A + &8, af has to be included to cover each
individual error a » a even though o has no limitation. The parameter k
here only indicates that the number of errors a + a is finite. In other
words, k could be any positive integer but k < o, Essentially we use
the translation schema to implement the deformation model. To make it
suitable for an n-stage TV pattern anal,sis problem with sequence Xy,

Xo, eeay, X we give the following definition.
2 n+1’

pefinition 2.8: An n-stage SDTS is a 5-tuple

T=(N, Y, s, R, S), where

(1) N,Y., A, S are defined as those of an SDTS.
(2) R is a set of rules of the form A + q, Bys 82, cnes Bn. where
ae (N U, Booe (N U Mm%, and the nonterminals in B. are a

permutation of the nonterminals in a.

The translation defined by an n-stage SDTS T, denoted by t(T), 1is the

set

*
x *
(O, y, v ) | (5, S, ***, S) ===>(x, Yoo Tts ¥ ). X ey Y€ a0}
Thereafter the analysis of TV patterns becomes a translation problem.
Next we investigate the "parsing" of a translation beginning with a

definition:

ot
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pefinition 2.9: Let T be a one-stage SDTS

*
o(T) = {(x, y) | (S, S) ===> (x, y)’.

Define the input Llanguage
L1 as {x | x, y) ¢ ©(T) for all y}
and the output language

Ly as {y | (x,y) € ©(T) for all x}.

The concatenation of L1 and L2 with respect to T is defined as the
set {xy | (x, y) 3 (M3, denoted by Lyoe

L2 € Litlor where N xy | x ¢ Lis ¥ € LZ}'

Theorem 2.1: Let L1 and L2 be the input language and output Llanguage

respectively of a regular SDTS T(N, X, 8, R, S) then Ly, is a CFPL.

(L1 is a context-free language.)

Proof: We shall prove the theorem by constructing a CFPG

G such that L(G) = L12.
A CFPG G(N', 2:', J, P, S8} is constructcd as follows:
step 1: N =<4A" | A c N} U (A | A e N} U (S}
Step 2: 2:' = 2. U a.

Step 3: Since T is a regular SDTS, each production in R is of the form:

A+ aB, aBor A +» a, a where A, Be N, a ¢ 2:, a € A*.




2r

(1) Add S ~» 8152 {K]K is the Llabel of production beginning with

51} ¢ to P.

(2) 1f A » aB, aB is a production in R such that A, Be N, a c¢ o
and a ¢ A*, then add the production to P:

A2 - a82 {K}K is the label of production beginning with 81} b

(3) For ea;h input rule of R: A ~ aB where A, Be N and a4 ¢ ZZ,
add the production to P: A1 -+ aB1 S(u) ¢, where S(u) is the set ot
tabels of the productions added in (2) corresponding to the translation
rules with input rule A + aB.

(4) I1f A+ a3, a is a production 1in R, where A ¢ N, a ¢ 2: and
a € A*, then add the production A2 +a ¢ ¢ to P. .

(5) For each input rule of R: A +» a where A ¢ N and a e 2., add
the production to P: A1 + a S« ¢ where S(u) is the set ot labels of
the productions added in (4) corresponding to the translation rules with
input rule A + a.

Then we shall prove that L = L(G).

12
Let xy be in L12. Then by Definition 2.9 there exists a derivation

sequence

(s, s8) ==> (a,A1, A A, )--= ===D (a1a2--—an, aaymm=a ) = (x,y).

171

* .
where ai € Z:, ai e A and A_.I € N. From the construction proceaure of

CFPG G, it is known that: For each derivaticn step
(agap===a A, aqapm"ma Ay =32 (843,777 4Ay Lqe aqapm oy R L),

there exist the productions
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i %1 M ;T %54y Ay P

with the success fietd of the first production containing the Llabel of

the second production. Besides the success field of the production

2 2 1 1

Ai * e Ai+1 contains the lapvel of the production Ai+1 > ai+2 Aj.+2 for
1 <1 <n. Therefare, there exists a derivation in G:
1.2 2 1 2 1 2 1 l
==> == == == : ==
S S'S > a1A1S > a1A1a1A1 > a1azA2a1A1 > a1a2A2a1aZA2
Z
TTD eesee ==> coe o
3132 3192 %-1 An-
==> ajay **t A aqay T oal g0 = XY. Thus, L12€£ L(G). Similarly, from
the definition of G, it can be shown that L(G) < L12. Therefore,
L12 = L(G).
Definition 2.10: Let T be an n-stage SDTS, L1 be its input language, LZ'
L3 s Ln+1 be ‘ts 1st, 2nd, *°*° nth output languages respectively.

pefine the concatenation of L1, Lz, eve with respect to T as

n+1

{x1x2 X | (x1,x2, see, xn+1) e 1(T)) denoted as L123.,,n+1-

Theorem 2.2: Let T be an n-stage regular SDTS, L1, L2 *ee, Ln+1 be its

input tanguage, 1st, *** nth output Llanguages respectively. Then

L12 ceo 4l is a CFPL. The proof is similar to that of Theorem (Z.1
' n .
except that for the present case, N = U <A’ | A e N} U {S}, and for
i=1
each production in T, there are n+1 corresponding productions 1in G. (L1

is a context-free language.)

.
'.

4
1
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-

Theorem 2.3: Let T be a simpie SDTS, Lo L be 1ts input d4nd output :

2

languages respectively. Then L12 is a CFPL. (L,I 1S a context-free

Language.)

Procf: We sha.l construct a CFPG G such that L{b)=L12. Since T s @

simple SDTS, each production 1in T is of the form A + o, ¥ where
WX . * . . .

A e N, o (NUY) , pe(NUA) , a, B have the same nonterminais with the

same permutation. G(N',X',J,P,S) is constructed as follows:

AV IANY U CAS[AENY U (S).

Step 1. N!
Step 2. X' = X U a.
Step 3. (1) Add S + $'s® {K|K s the label of production beginning

with 31} ® to P.

(2) For each production A =+ a1A1 - anAn°n+1' S.'A1 .

: o * ,
BnAan+1 in R, where AieN’ ae I, BiEA , AeN, add

1 1 . .

A a1A1 e "nAn“n+1 {KIK is the Llabel cof prodguction
2 2 2
A ByAy oo Anan > ¢ i
and A2 + 8 A2 eae 8 AZB {K|K is the Llabel of productions

11 nnn+l {
beginning with the leftmost nonterminat of the present ;4

derivation string} ¢

Strictly speaking, there is Llittle restriction on the next
step of a derivation after one application of the production
beginning with a nonterminal of the form AB where A is in N.
The only restriction is that the next applied production must
begin with a nonterminal of the form A1 where A is in N.

The proof that L(G)=L is similar to that of Theorem Z.1.

12
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Corotlary 2.1: Let T be an n-stage simple SOTS, L1 be its input

language, and L ees L be its 1st, 2na ... nth output Languages

2’

j . h i .
respectively Then L12...n+1 is a CFPL

Rosenkrantz (53] proposed tne concept ot pr.jrammed grammars oS 4

n+1

new device for generating languages. It is shown that the class of CFPL
properly contains the class of context-free languages ana 1s properly
contained within the «class of context-sensitive languages. Writing a
CFPG is very much like writing a computer program ana 1S a rather
straightforward Logical process compared with the task of writing a
context-sensitive grammar. Swain and Fu L54] further applied CFPG to
pattern recognition and proposed a stochastic syntax analyzer for CFPL.
Lu and Fu [£111 then proposed an error-correcting parsing algorithms for
CFPL. By the previous discussions, it 1s known that a class of TV
patterns can be described as a CFPL. Then the analysis of TV patterns
becomes the parsing of a CFPL which has been well developed by fu et al.
This fact is to say that some TV pattern analysis problems can be
thought of as parsing of a CFPL. In other words, we can infer a CFPG to
interpret or to generate the time-varying process. A CFPL parser can be
used to classify an input pattern sequence. Actuaily the parsing task
can be performed by directly building a parsing algorithm from the
translation schema instead of constructing a CFPG. This parser consists
of n interrelated 'sub-parser'" each of which deals with the
corresponding X, input string. The basic idea 1is that these n 11nput
strings x1’...,xn need not be concatenated. However the relation among

these subparsers still has the spirit of a CFPL parser.
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In applying syntactic methods to pattern recognition, one
dimensional (string) giammars are sometimes inefficient in describing
high-c¢imensional patterns. For the purpose of etfectively cescribing
high-dimensiconal patterns, Fu and Bharaava [55]J introduced the
application ot tree svstems to pattern recognition. Lu and Fu L?cd
proposed error-carrecting tree automata for the recognition of noisy

patterns. Five types of error transformation are introduced:

(1) the subst tution of the label of a node by another terminal symbol,

(2) the inserticn of an extraneous labeled node between a node ang its
immediate predecessor,

(3) the inserticon of an extraneous labeled node to the {eft of all the
immediate successors of a node,

(4) the 1nsertion of an extraneous lLabeled .i0ode to the right of & noce,

(5) the celetion of a node of rank 1 or 0.

The three operations of insertions in rule (2), (3) anc (4) are
named as stretch, branch, and split, respectively, according to the
relative position of tne 1inserted node to the original tree.
Apparently, the inverse operation of any type of insertion is deletion,
and the inverse of deletion operation is one of the three types of
insertion.

The detormation from a pure pattern to its noisy pattern cen be
serformed through a sequence of application of these error
transformations. Through the wuse of the deformation model, the
trransformation concept can also be applied to tree grammar to solve some
time=-varying pattern analysis problems which are not easy to handle with

string grammar translations. After introducing a brief definition, we
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propose a tree grammar translation schema. (For oaetailed aescription

about tree grammar, refer to {121).
pefinition 2.11: A tree grammar Gt = (v,r,P,S) over <§:,r> 1s  expansive

iff each production in P 1s of the torm

X + 7/ \ or X
Ki=e X0

g T x where O

and X are nonterminal symbo.s.

0r XqreerX ()

Definition 2.12: A tree SDTS T is a 4-tuple (v,r,R,S) where V,r,S nave
the same meaning as for a tree grammar, R is a set of productions of the
form: A + a, B such that o ana B8 have the same nonterminals, § 1is tne
result of apptication of a sequence of error transformations to a ana
the input grammar is in the expansive form.

An n~stage tree SDTS can be formed with each production being of
the form A » a, 81, BZ...Bn where each B, is the result of some
deformation of a. The concept of "programmedness' can also be applied
to tree grammar. Consequently, Lu and Ffu's tree language analysis

method can be used to analyze some more complex TV patterns.

2.4 Stochastic Translation

Definition 2.13: A stochastic syntax-directed translation schema (SSDTS)
(831 is a S-tuple T = (N,2X,4,R,S) where
N = a finite set of nonterminals;

Y= a finite input alphabet;

4 = a finite output alphabet;
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R = a finite set of rules of the form p: A » a,8 fOr A in N, a 1in
(N U 2:)*, B in INU &%, 0 <p <1, with the nonterminals in a
being a permutation of those in §;

S in N = the starting symsol.

Each nonterminal n the a portion of a rule has an iadentical, associatec
one in 3 (matching superscripts are wused as needed for repeatec

nonterminals).

pefinition 2.14: A schema T 1is:

(a) wunrestrictec if for =zach rule p: A + a,B ~he probability p is not
conditioned on other rules or events.

(b) proper if for each nonterminal A the probacilities of all rules 1in

which A is the leftside nonterminal sum to 1.

. . . *
We consider only unrestricted, proper schema. Translations from 2: to

*
A are produced as follows.
Definition 2.15: A translation form of T is defined recursively:

(a 1: (s5,5) is @ form with associated S's;
(b i3f p: (wAo,vA8) is a form with the A's associated and p: A + a,B

is a rule, then pp: (wao,y88) is a form.

pefinition 2.16: The stochastic translation from 2:* to A* produced by T

with starting symbol § is the set

t(r,8) = {(x,y,p))|x in }:*, y in A*,p = 1 p for all translation forms §H:

T defines a function Py Z:* xb* - £0,1) such that
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f(3)

N 42

Prix,y) = pij(x,y)

1 3=1

—.

i

where there are n distinct standard derivations (e.g., leftmost) of the

translation form (x,y) with f(i) steps in the ith one, and pij(x,y) is

the probability assigned to the jth rule of the ith derivation.

pefinition 2.17: A schema T is:

(a) consistent if

(b) simple if in each rule p: A » q,B the nonterminals 1in
the same order as their associates in B.
(¢c) regular if all rules have the form p: A + xB, yB or

for A, Bin N, X in X, y in a™.

transmission can be described as follows:

T = ({S,A,B,C}, 10,13, {0,1}, R,S)

% p
R: S3 C 0A, QA
3 Ps
s 0A, 1A
5 P
s S 14,14
2 Ps
s % 1A, 0A
2 Pe
AZ 08,08
5 P
A% > 08,18
2 P
A 18,18

a occur 1in

Example 2.2: The occurrence of substitution error in a 4-bit binary coae

it sl el i et

)

TEEEpT——— T

-

=
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5 P

A ? S 18,08
P

B 7 0c,0c¢
2P

B 7 0¢C, 1¢
3 P

B 7 1¢,1¢C
7 P

B8 7 1¢,0°¢
2 Pc

C 7 g, 0
2P

C 0, 1
1
z e

¢ 1, 1
3 Ps

C 1, 0

‘where PC is the probability of correct transmission of each individual
bit, PS is the probability of substitution error for each individual bit
and Pc + PS = 1. The translation pair (0000, 0010) 1is derived as

foLLous:1

2 P
S 3 OA, OA

2 P

7 008, 008

2 Ps

7 000c¢, 001¢

S P

2 S 4000, 0016
The probability of this derivation is
1 1 1 1 3

1 -
2P xzPexaPsx3 P =95 PP
There is another way to describe the probabilistic property of a
stochastic SDTS. Suppose that A is a nonterminal of a stochastic SDTS
and there are n translation rules with A + a as leftside (or input rule

as defined before):

il
T

-

-——
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Then rewrite these rules as

P, /P
A_P_- Q’A..l_ 81
P,/P
Sl
PP
A—— B8
n
n
where P = I p,
. 3
1=1

This set of rules states that rule A + a can be applied for rewriting of
A in input sentence with probability p and if ruie A » a 1is applieq,

there are n alternative rules for rewriting of A in output sentence with
P.
El being the conditional probability of the ith rute. This variation of

rule format does not change the probabitity of the derivation of a
P.
translation pair. Suppose that A —' a,B, is appliea, then A L ana
P./P P.
A —— B, are also applied and P, =Px -,

p
One advantage of this new form of translation rule is that it can
display the probability of translation pair, input sentence and the

conditional probability of output sentence. for instance, the

stochastic SDTS of example 2.2 can be rewritten as:

)
1 P
s 0A, s-t 0a
PS
s—= 14
1 P
s—2 1A, s-£ 1a
PS
1 s == QA
A= 08, a-L 05
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f)
1 A 18
LA p
A2 18, a-% 138
Pﬁ

1 A— 08B
= P

82 0c¢, B-C 0o
PS

] B 1 ¢
= p

B2 1¢, 8-S 1¢
PS

) B—= 0¢
- P

c2 0 , ¢c-£op
PS

) c -2 1
2 Pe

c-< 1 , ¢c-L q
Pg

c—= 0

The teft part above is the set of rules for input language and each rule

is followed by a set of rules fqr outpwt Lang*age. Th? input string

2 2 2

0000 is derived s follows: S<0A 2008 <000c < 0000. The

nrobability of this derivation is %Z' Given this derivation, the output
J P P P
string 0010 is derived as follows S —= 0 A —= 00B — 001C —= 0010. The

cenditional probability of the output string 0010 given that 0000 is the

input string s P?PS. The probability of the translation pair
<0000,0010> §s 4— PP .
1 c s

bDefinition 2.18: A stochastic programmed grammar [10] is a 5-tuple

G = (VN,VT,J,P,S), where
1) vN is a finite set of nonterminals;
(2} VT is a finite set of terminals;

(3) J is a finite set of production labels;

(4) P 3s a finite set of productions;

. -

—
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(5) S is the start symbol, S ¢ VN.

Each production in P is of the form

(r) w+n SWPW FMIPMW.

' +

The core of the production is "w + n," where

* *
w e <vTU V) TV Vg UvN)
and

*
n e (vTUvN) .

Each stochastic production in P has a distinct label, r ¢ J. U ¢ 2 and

W e ZJ are called the success and the failure ‘'go-to" fielaos,
respectively. P(U) and P(W) are probability distributions associated
with the sets U and W, respectively.

In applying the stochastic production to an intermediate string ¢
derived from S under L(eftmost interpretation, if ¢ contains the
substring w, then the lefimost occurrence of w is expanded 1into n and
the next production to be applied is selected from the success ‘‘go-to"
field U according to a probability distribution P(U). If £ does not
contain w, then ¢ 1is not changed and the next production 15 selected

from the failure ‘'go~to” field with a probability distribution P(W).

r r r
- 2 n _ . . .
Suppose that S w1 > w5 > > Vosr T X is a aerivation of

x, where rj denotes the Label of the pruduction used to directiy derive

wj+1 from wj. The probability, pi(x), associated with the i-th

derivation of x 1is defined as the product of the conditional

probabilities D(r1)p(r2|r1)...p(rn]rn_1). The 1interpretation ot the




39

conditional probability D(Fjlrj_1) is the probability of selecting ry as
the next production to be applied from the success 'go-to” field if the
rj_1-th production is successfully applied. Otherwise, p(rjlrj_1)
denotes the probability of selecting rj as the next production to be

applied from the failure "go~to" field of the rj_ ~th production. p(r,)

1 1

is assumed to be 1.

Definition 2.19: A stochastic programmed grammar G 1is said to pe a

stochastic context-sensitive, context-free, or regular programmed
grammar, if G is a context-sensitive, context-free or regular pg.

The stochastic language generated by a stochastic pg 6 is

Di(x)

LGG) = {(x,pxN|x ¢ V;, S > x, for i= 1,...,k

and

p.(x) = p{x)2},

il x

.i

and k is the number of all distinctly different derivations of x from S
defined in G and pi(X) is the pro: 9ility associated with the i-th
derivation of x.

The stochastic language L(G) 1is called a stochastic programmed
tanguage. G is said to be consistent if and only if

T p(x) = 1.
xel(G)

b e e ad e o

AR N T Ty R T i TN R
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Theorem 2.4: Let L, and L, be the input Llanguage ana the output

1 2

Language, respectively, of a stochastic regular translation schema

T(N,E:,A,R,S), then L., is a stochastic context-~free programmed language

12
(SCFPL). (L1 is a context-free Language.)

Proof: We shall prove the theorem by constructing a SCFPG G such that

|
LG = A SCFPG G(N', 2 ,J4,P,S) is constructed as follows:

L12.
step 1. N' = <AT{aeny U €A%jaeny U <5y,
]
Step 2. X =X UA.
Step 3. Since T is a stochastic regular transtation schema, each

production in R is of the form
P: A + aB, oB
or
Pt A+ a,awhere A,BeN, aey aes™. 0 < P < 1

(13 Put all rules of R which have the same leftside nonterminal in
a group within which all rules with the same input rule are further

grouped together as follows:

Pyg: A ™ a4Bq, 4By

P12: A+ a181, 31281

A+ a

Pinc? 1812 %0 (1B

P21: A~ aZBZ’ 02182

A+*abB,a B

Pmn(m): mm mn{m) m

oM
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or

P A+ a

mnim)* mn’ %mn(m)

where 0 < P.. < 1,

A, B]. € N,

a; ¢ Yy,

A*
.. €

u1J ,

n{i) is the number of rules having the

same input rule A + aiBi or

A~ a,

and m is the number of different input rules
for nonterminal A,

1<i<m 1<) <n).

.B. of the group formed for A

(2) For each rule P..: A + a.B,,a.
ij iT17793 74

in (1), add the rule to P:
y A% > a.. B° S PW o 1
1) 1

where y is the assigned label for this new rule, S(U) and P(U) are the
success field and the associated probability distributions. The
construction of S(U) and P(U) is explained by the following example:
Suppose that Bi = A and the set of rules in R is grouped as shown in
(1. Then SW) = {y(M,y(2),...,y(tm)> and P = {P1,P2,...,Pm} where
vy(k) 1is the Llabel for the corresponding rule of the k-th input rule of
s

A, which will be described in (3), and Pi = pP., + Pio ¥ eee t P

i1 2 in(i)

the corresponding probability.

(3) For each different input rule A ~+ aiBi of the group formed for

A in (1), add the rule to P:




T T e —y ——-
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v A »aiez SW) P o1

where y is the assigned label for the rule, S(U) ana P(U) are zne
success field and the associated probability distribution respectively.
S = <y ,vy(2,...,¥(n(1)) ), where n(i) is the number of translation
rules with the same input rule A + aiBi and y(k) 1is the label of the

rule in P corresponding to the k-th of these transtation rules.

P = {P1’P2""’Pn(i)} where P1 =P11/(P11+P12+...+Pin(1)),
Py = Pik/(Pi1+P12*"'+P1n(i))’ 1 <k <ni).
(4) For each rule Pij: A - 35,9 of the group formed for A in

(1), add the rute to P:

2-’
Y AT e e 1 e

where y is the label assigned to this new rule.
(5) For each different input rule A -+ a, of the group formea in

(1), add the rule to P:

y Al ~a, s PW 61

where y is the label assigned for this new rule, S(U) and P(U) are the
same as defined in (3).

(6) Add the rule to P:

1.2

1 s+ 58'S Sy P ¢ 1

where 1 is the Label assigned for this new rule,

S = (y(D ¥y ,eee,yimd) and PW) = {P1,p2,...,Pm}, where m is the

number of different input rules with leftside nonterminal S, y(1) is the

Label for the corresponding rule in P of the i-th input rule,
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Pi =Pi1*pi2+"'+Pin(i)’ n{i) and Pij are as defined (1).

Now we proved that L12 = L(G).

Let (xy,P) be in Then there exists a set of different

L12'

derivation sequences. C(Consider one derivation sequence:

Py P, P
($,8) — (a,A,,a,A,) — (a,a A ,a,a_A ). (a,a

LS 132R2-%1%8 1827 3,39%0 03 = Oy

From the above construction procedure of the SCFPG G, it is known that

for each derivation step

1

P.
1
(a13p00-35A 000500000800 — (@13, 008; Ry g 000500 gA 1),

there exist the production rules in P:

1 1
Y Ai ai+1Ai+1 sy PW ¢ 1

! 2 2

> ' '
; ¢ 1Ry sw" pPWYH ¢ 1

where S(U) contains y' and the corresponding probability in P) s

Pi/qi for some value a;- Besides there exists a production rule in P:

YOSt a1Af SW' PW'YY ¢ 1

where S(U''® contains y and the corresponding probability in P('*') is

a;. (Pilqi) * Q = Pi.

Therefore there exists a derivation in G-

q
s 1glse 2

7
a1A1
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A AZ q1+2 pn/q
8992034184109 %410 e

39354002 30050 000 = XY .

q1.(P1/q1)'QZ'(PZ/QZ)"'qi.(Pi/qi)'"qn'(Pn/qn)

= P1'P2...P1...Pn

Therefore, for each derivation of xy in T, there exists a unique
corresponding derivation with the same probability in G. Besides, two
different derivations of xy in T will not map to the same derivation in
G. (In other words, it is a one-to-one correspondence). Similarly, for
each derivation of xy 1in G, there exists a wunique corresponding
derivation with same  probability in T (also a one-to-one
correspondence)., Therefore, there exists a one-to-one and onto
relationship between the set of derivations of xy in T ang the set of

derivations of xy in G. Therefore,

(xy,P) ¢ L12 <==> (xy,P) € L(G) .

L., = L(G) .

12

Theorem 2.5: Let L1 and L2 be the 1nput Llanguage ana the output
Language, respectively, of a stochastic simple syntax—-directed

translation schema SSSDTS T(N,2.,8,R,S), then L__ is a SCFPL.

12




Proof: We shall construct a SCFPG G such that L{(G) 12"
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il
-
>

SCFPG
GIN', 2:',J,P,S) is constructed as follows:

Step 1. N' = <AT|A € NY U (A%[A € NY U (S}

Step 2. > s U oA

Step 3. Since T is a SSSDTS, each rule in T is of the form

P: A~ a,3

where 0 <P <1, A e N, a e (NU 2:)*: B e (NU A)*, and a,pb have
the same nonterminals with the same permutation.

(1) Put all rules of R which have the same leftside nonterminal in
a group within which all rules with the same input rule are further
grouped together. The ©process 1is demonstratea by an example for

nonterminal A as follows:

P A g, 8y
Prat A" 3. Bpp
Pincny® A7 %0 ey
Pars A7 2, H5
Pmn(m): A um’ an(m)

* *
< P.. . .. . ..
where 0 < Pij 1oy e (NU Yo, Bl € (N U8, a;, 8, have the
same nonterminals with the same permutation, 1 < j < n{i), 1 < i <m,

n(i) is the number of rules having the same input rule A » a., m is the

number of different input rules for nonterminal A.

(2> For each rule Pij: A~ ui’sij of the group formed for
nonterminal A in M, where a, = uj1A1"'°1nAnai(n+1)’
BiiTBijqhae e B i AR ey

ode 2
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* *
aikeZ,BjjksA,AkeN,1§kin+1,n_>_1,
add the rule to P:
2 2 2

y A~ Bij1A1"'BijnAnBij(n+1) Sy P ¢ 1

where Y is the Label assigned for this new rute,

S = G (1),y(2),eeu, MY, PW = {P,,P,...,P 3, v(K) s tne Label

for the corresponding rule of the k~th input rule of nonterminal Aty

Pk = Pk1+Pk2"'+Pkn(k)’ 1<k<m m is the number of different 11nput

rules of A1, sz is the probability of the &~-th transltation rute of the
k-th input rule for A1, n{k) is the number of transtation rules of the

k=th input rule for A1.

(3) For each different input rule A ~+ a, of tne group formed for A

N *x
in (1), where I LET LT AV, I RO 2 A eN D<Kk <N,

n>20,

add the rule to P:

1 1 1
Yy A a10A1"'ui(n-1)Anuin sy P o 1
where Y is the Label assigned for this new rule,

S(W) = {yM),vy(@),...y(n(iN)}, PWU) = {P1,P2,...,Pn(1)}, n(i) 1is the
number of translation rules with the same input rule A + e, vy(k) 1s the
label of the corresponding rule in P of the k=tnh translation rule with
input rule A » a., Pk = Pik / (P11+P12+"‘+Pin(i))’ Pik 1s the
probability of the k-th translation rule, 1 < k < nti),

(4) For each rule Pij: A~ ui’sij of the group formed for A in

(1), where a; € 2:*'8ij € A*,
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add the rule to P:

o AT sij S(UW P ¢ 1

¢

where + 1is the _abte' assiagned for this new ru' -,

S(W) GO, ,v(1,2) 000, xC1,m(1)) v (2, 1) o ey (L ,m(t)) )

P(U) = {P1,1’P1,2""’P1,m(1)’p2,1"'"Pt,m(t)}’ where

t s the number of nonterminals in N, m(k) is the number of gifterent
input rules for the k-th nonterminal, y(k,%) is the (label of tne rule

added 1in (3) corresponding to the &~th input rule of the «x-th

= + +
P, a1kt P, ik, 07

number of translation rules associated with the &=th input rule of the

nonterminat of N, n(k,%) s the

Pr e

k-th nonterminal, P are “heir

. P ces P.
K,2,17 k,2,27 ’ K,2,n(k,8)
corresponding probabitities.

(5) Add the rule to P:

v s +s's? sy Pw e 1

where vy is the label assigned for this new rule,
SW) = {yM) vy, ,y(m2Y, PW = {P1,p2,__,,pm} , where

m is the number of different input rules for nonterminal S, y(i) is the
Label for the rule added in (3) corresponding to the i-th input rule of

S, Pi = Pi1+p12+...+Pin(i)’ n(i) is the number of translation rules

associated with the 1i-th input rule of §, Pi1'Pi2""’pin(1) are the

corresponding probabilities of these translation rules.

g
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The proof of L(G) = L12 is similar to tnat of theorem Z2.4.

2.5 Illustrative Examples

Example 2.3: The following CFPG GSQ generates the language
_,.nnnn
LSQ-{a bc'd’n>1>

which could be interpreted as the language of squares of side length n =

1,2,..., £10]

Ggq = WprVysd P S)

where the vocabulary consists of

vy = €5,A,B,C,D2
a [
Vp = (=, bt, +, d¥)

the label set is

J =41,2,3,4,5,6,7),

and the production set P consists of 7 rules:

B i it
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Success Failure

Label Core branch branch
1 S + aAB {2,3) ¢
2 A + aAC {2,3} ®
3 A+ D {4 @
4 C +~n {5% TR}
5 D + obDc {6} v
6 B+ a {7} ¢
7 D + bc o ¢

However, from a different point of view, this grammar can also
describe the following TV pattern: {(x1,x2,x3,x4)lxi is a lilne segrent,

X leads X _ by 907, and each X has the same length.}

9

Example 2.4: Zucker [56] used the concept of transformational grammar to

analyze texture. He first built an 1ideal texture. Then a set ot
transformation rules were used to transform the ideal texture 1into a
real texture. Using translation schema, we can handle these problems
too. For example, consider the pattern shown in fFig. 2.1. A 2~stage
tree SDTS with substitution error only can be usea to characterize such
a time-varying image sequence. for an iteratively varying pattern (like
TV texture), an n-stage tree SDTS can be constructed to model its

evolving process.

Example 2.5: With the development of (T (Computerized Tomography)

technique, a 3-D object is usually represented as a seguence of slices
(e.g. X-Y plane cross-sections along Z~axis). The translation schema
can be applied to describe these 3-D objects. Let {x1,x2,...xn} be a
sequence of X-Y plane cross-sections with Z~-coordinate being 1,2,...n,
an n-stage SDTS can be constructed and then transformed to a CFPG. Here

a simple example is given for an object described by & slices (Fig.

2.2).
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Figure 2.1 An example of tree-type transform

A0

(‘-) (.’5-)

Figure 2.2 A sequence of cross sections of a 3~D object
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This object is described by the following "programmed'" SDTS

T({S,A,B,C,D,E,F},Y,>, 4, R, S)

where 2>={a/,b | ,c\,d=~2>. R contains

Labe. Core Success
Field

1 S+~ABCDEF ,ABCDEF ,ABCDEF ABCDEF <{2,32

2 A+d ,d ,d ,d {43

5 A+dA ,dA ,dA ,dA {5

4 B+a ,ab ,ab ,a {63

5 B+aB ,aBb ,aBb ,aB {7}

e] C+c ,C ,C ,C {8}

7 C+cC ,cC ,cC ,cC {93}

8 D+d ,d ,a ,d {102}

9 D+dD ,db ,db ,dD {113
10 E+a ,ab ,ab ,a {123
11 E+ak ,aEb ,aEb ,aE {13>
12 F+c ,C ,C ,C ¢
13 F+CF ,CF ,CF ,CF 2,3}

Example 2.6: Here an example is given to show the transformation of an
SDTS into a CFPG. The transformation procedure was described in theorem
2.3.

Suppose that an SDTS is given as follows:

T= (N, X,>,R,S)

where N = {5,A,8,C,D0}, 3 ={ a , b , C , d , € }. R contains

S » ABCD, ABCD, ABCD
A +>aA , bA , bA
A+ a , b , b
B+dB , eB , eB
B+c¢cB ,eB , eB
B +d , d , d
C~»cC ,aC , bC
c»at ,aC , bC
c +d , a , b
C »dc , aC , bC
b »adb , bD , bD
D » a , b , b

——e

o —————
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A CFPG G(N'J.J,P,S) is formed as follows:
The following steps follows the procedure of theorem 2.3. L
Step 1: N' = {A1IA e N} U {AZIA e N} U {AsiA e N} U{s?
= s> u<at,et et ot st i=1,2,3)
Step2: L =X Ua=SuY =% }
Step 3: (1) Add S =~ 515253 { } to P. The content of the success fiela g
will be filled when all the rules are constructed. ‘
(2) For the rule in R: S » ABCD, ABCD, ABCD ?
add ﬁ
H s+ atslc! ¢ >
s® + a28%¢%° ( 3
$3 + a3
to P

e p— e
D VBN

For the rule in R: A + aA; bA, bA

add

A1 +> aA1 {2

A% . oA (3

a3+ oad (3

to P

For the rule in R: A »+ a,b,b

add

Al +a (2

A%+ b €}

A b () :

to p
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and similarly for the rest of the rules of R. Then fill 1in those
success fields as described in theorem 2.3. Then for convenience,
replace A1,B1,C1,D1, Az,sz,cz,oz, A3,83,c3,o3 by A,8,C,0,E,F,G,H,W,X,Y,2

respectively. The following is the resulting (FPG,

N = Ls,s0,s2,5°.4,8,C,0,E,F,G H,W,X,Y,2}
P =
Success Success
Label Core field Label Core Field
1 spstsfsd (2 17 X=d £18,19)
2 SZ+ABCD 3> 18 C+cC {222
3 53+EFGH {43 19 C+aC {22}
4 ST+WXYZ {5 20 C~+dC {22}
S  A+aA {72 21 C+d {232
6 A»a {8 22 G+aG {24
7  E-bE {9 23 G+a {252
8 E+b {10> 24 Y-bY {18,19,20,21%}
9  Webw {5,6} 25 Y+b {26}
10 W+b {11} 26 D+ab {28>
1" B8+dB {142 27 D+a {292
12 B+¢cB {143 28 H+bH {30} - -
13  B+d {152 29 H+b {312
14 F+ef {162} 30 1+bZ {26}
15 F+d {17y 31 Z+b s
16 X+eX {11,12,13}

Example 2.7: The stochastic translation schema T(N,Y.,8,R,S) described

]
in Example 2.2 is transformed to & SCFPG G(N', Y. ,J,P,S) as follows:

i

M

alia e N> U A%]A < N} U (5D

s1,at,8',¢7,5%,82,6%,c2, 53

Step 1. N'

]
Step 2. £ =2 U a = {0,1}
Step 3.1. Put the translation rules of T in the order described 1in

theorem 2.4, (They are already in order in Example 2.2).
1

2'c
Step 3.2. For rule S == QA, OA

3
1
i
{
!

g
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add to P: y s + 0a% S PCLY o 1

2's
For rule S —— 0A, 1A

2

add to P: y S° + 1A% S PW) o 1 {

(y , SCWU) and P(Y) are given later)

Other rules are ?dded similarly. 1

?Pc Eps
Step 3.3. For the rules S—=—= 0A, OA and S == DA, 1A

1

add to P: y S » OAY S(U) PG ¢ 1 '

Other rules are,added similarty.

-

Step 3.4. For the rule ¢ =210, 1
add to P: ¢y C

Qther rules are ?dded simitarLy1

Epc §Ps
Step 3.5. For the rules C =—=0, 0 and ¢ =0, 1

add to P: y C' » 0 SW) PW) ¢ 1
Other rules are added similarly.
Step 3.6. Add the following rule to P:

1 s~ s's? sy P o 1

The final form of the SCFPG is

ecest,al,el,cl,s8,a2,82,¢2,5),40,13,4,P,5)

P:
Label Core u PWw W P(W)
1 s » sls® 2,3) c% PSS 1
2
2 s'. oal €0, P, P} 4 1
3 s1 . 1l €0,11 P, P} o 1
4 al » o8 €2,13) P, P) o 1
s ateel (1213 <, PY o 1 j
i
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6 8 - oc’ €14,15) P, P} o 1

7 8! - 1¢” (14,153 P, P} o 1

8 .o (16,173 <P, P} o 1

9 ¢b . (16,173 (P, P> o 1

10 st W, G, 1
11 ST R S L I
12 A0 6,7 G, e 1
13 A2.18° w6 G, e 1
o8P0 89 G, 6 1
15 8.1t 18,9 &, e 1
16 .0 ¢ 1 s 1
17 % ¢ 1 o 1

2.6 Conclusion

The time-varying pattern analysis problem is investigated 1in this
chapter. The problem is analyzed through the use of deformation models
and translation schemas. 1t is shown that some time-varying patterns
can be characterized by a context~free programmed language. Therefore,
the well developed error-correcting string parser can be applied. The
proposed method can be extended to problems involving three-dimensional
patterns. Tree translation is proposed to analyze more complex TV
patterns. Stochastic translation 1is also presented to model the

stochastic properties ot TV patterns.

{
i
]
|
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CHAPTER 3

A GENERALIZED SYNTAX-DIRECTED TREE TRANSLATION MODEL

3.1 Introduction
In chapter 2, we have proposed a syntactic method for time-varying
pattern analysis. An input sequence x

X ..., Where L is the

1’ 2/
pattern representation at time ti' is analyzed through a translation

model which 1is defined as a mapping from a language L, to another

1

in formal language theory. Consider L as the set of

language L 1

2
possible patterns occurring at time t1 and L2 as the set of patterns at
time t2. The relation governing the time-varying process of the
sequence is then formulated as a translation problem. In this chapter,
the formulation of string translation 1is extended to trees wusing a
generalized syntax-directed model. The generalized model is compared
with the conventional top~down and bottom-up tree translation model. It
is shown that both the top-down and the bottom-up models are special
cases of the generalized model. A parsing algorithm for this
generalized tree translation model is presented.

Definitions and notations that will be referred to are briefly
reviewed [57,58,59].

An alphabet £ is ranked by a function r:Z + N which assigns a rank
to each member of Z. For each n, Zn = r_1(n) denotes the set of symbols

in L which have rank n. Intuitively, the rank of a symbol is the number
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of sons it has when it labels a node in a tree.

Let I denote the set containing left and right brackets and comma.
To avoid possible confusion, rarnked alphabets are not allowea to include
elements of M. For a ranked alphabet I, the set I, of (finite Llabeled)
trees over the alphabet I is the least set of strings in (I L}H)* such
that

4D Zo_g_ t, , and

n

(2 forn>0, bce Zn, and ty, Yo, aee, T € L., b[t1, tor -ees

tn] € Z*.

pefinition 3.1: If I is a ranked alphabet and 4 1is an alphabet, then

£,(8), the set of trees in I_ indexed by A, is defined recursively as
follows.

1)) onA C ).

2) If be Zn, n >0, and t1,...,tn e £ (a), then b[t1,...,tn]

€ Z*(A).

pefinition 3.2: A (nondeterministic) top-down tree transducer 1s a

S5-tuple M = (@, Z, A, R, Qo) where
(1) Q@ is a finite set of states,
(2) I is a finite ranked alphabet called the input alphabet,
(3) & is a finite ranked alphabet called tne output alphabet,
4) Qo C @ is a set of starting states, ana
(5) R is a finite set of rules,

rRC U (QxZ)x(AU(QxX))*.
- 30 n n

W—-—*- -
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-

A rule is written in the form (q,b) *+ w, where o ¢ Q, b ¢ Zhe @NG w

eta U@ x xn))* for some n, where X, denotes the set {x1, Xo, eee, xn)
for n > 0 and XO denotes the empty set. xs refers to the 1th son of the
current input node.

The behavior of a top-down transducer is defined 1inductively in

terms of the output produced from a tree starting in state g.

Definition 3.3: Let M = (@, £, 4, R, QO) be a top-down tree transducer,

and let g e Q. Ffor a tree t ¢ I , the set of trees output from t by M
starting in state q is denoted by M(qg,t) and is defined inductively as
follows.

(MY If t =b e EO, then M(q,t) = {w|(qg,b) * w e R};

(2> If t

b£t1, eee, T d e I, then

M(q,t) = U W(<p,x.>:Mp,t.)[pea, 1< j < n).
(q,b)+weR 3 ]

Definition 3.4: A nondeterministic bottom-up tree transducer L583 is a

five-tuple M = (@, I, A, R, f) where

1Y) Q@ is a finite set of states,

2 I and & are finite 1dinput and output ranked alphabets,
respectively.

3> F € ais a set of final or accepting states,

) tNo=aNn=sNx=4, and

5) R is a finite set of transition rules such that every rule in R

is either of the form
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(b) + (q,t), where b ¢ Eo’ qQ€eQ ana t e,
or of the form

(b,q1,...,qn) + (q,t), where n > 0, b ¢ Zn, a, A4,---,q, € Q, and t ¢ A*(xn).

The behavior of a bottom-up transducer on an input tree is aefined

inductively as follows.

Definition 3.5: Let M = (@, I, 8, R, F) be a bottom—up tree transducer,
and let g e Q. For a tree t ¢ I, the set of trees which M can output
from t ending in state q is denoted by M(q,t) ana is cefinea inauctively
as follows:

(1) for b ¢ Eo' M(q,b) = {wlb +» (q,w) € R},

(2) For t = b£t1,...,tn] e L,

M(q,t) = {v|for some rule (b,q1,...,qn) + (g, W) € R,

some i, 1 < i < n, and some u, e M(qi'ti)' vV € w(xi:“i)}

Definition 3.6: A generalized syntax directed translat.on (GSDT) (571 is
a four~tuple F = (G, A, T, R), where:

(1) 6=, £, P, S) is a proper context free grammar;

(2) 4 is a finite set of output symbols;

(3) T is a finite set of distinct translation symbols of the form
Ti(A)’ where 1 is an integer and A is in V - {S}, plus the symbot 31_
Whenever it is possible to do so without confusion, we will denote 11(A)
by Ai' we call Ai the i-th translation symbol associated with A.

(4) R is a function which associates with each production A + a in

P, a set of semantic rules (A1 = 81, Ay, = 32,...,A = Bm}, in which each

m
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. . * N . .
2. is g string in (T U , such that all transiation symbcls aupearing

N

in Si are transiation symbols associated with nonterminals appearing in

.k . ,
For each x ir & we detine F(x), the <=+ ot outputs of x as
follows:
(1) If x iz net n L(G)Y, then F(x) = o.

(2) If x 1s in L{(G), then each parse tree with yiela x defines an

wy

element y in F(x), which s the value of the translation symbol
associated with th2 root. The value of 81 1s computed bottom-up as
folcows:

(i) With each intericor node N of the parse tree labeled A » a are
associated the translation symbols A1, A2, ey Am, which are a:l the
translation symbols associated with A. The values of these trans.ation
symbols at N are computed using the semantic rules and the vatues o7 the
translation symbols at the descendants of N as follows.

*
(11) u a is x_ @ B - here x. is in I ano b 1
Suppose 081X 185X, Ekxk, where ; isin ; s

in Vv, 0 <j <k. Suppose A, = yoC1y1C2y2 .en C{YL is the semantic rute
for Ai' where y is in 3" and C. is a transitation symbol in ' associated
]
with Bh for some 1 < h, < k. Then V(Ai)’ the value of Ai at noce N, is
j v
. L3 * e -
the string yov(c1)y1v(C2)y2 cas V(CL)YL in 4 , where v(cj) is the value

of Cj at the descendant of N whizh is lLubeled by 2 Bh production.

J
T(F), the translaticn defined by F, is the set {(x,y)ly ¢ FOOI.

Example 3.1: Let F = (G, {a,bl, {31, A1, Az, 81, 82}, R), where the

productions of the grammar and the associated semantic rules are:

Productions Semantic rules
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1) § +A S1 = A1A&
(2) A + aAbb A'l = {;A.‘B1

A2 = bAZBZ
(3> A + pAaB A.1 = ah, B,

AZ = DA282
(4) B8 + A 81 = A1

82 = A,
(5) A+ ¢ A.] = ¢

A2 = ¢

f defines the translation {(w,a1b1)ii > 0and w e {a,b}*, such that w

has 1 a's and 1 b's).

3.2 Generalized Syntax-Directed Tree Translation

A top-~down tree transducer (TDTT) does not specify an 1input
language, it assumes that all trees 1in Z, are input sentences. A

bottom-up tree transducer (BUTT) does specify an input language, which

is a subset of ¢ but given an input tree sentence, even though a BUTT

*x’
can copy a subtree in an output sentence many times, all the copies of &
subtree are the same, while a TDTT can generate different copies of &
subtree. There exist translations which can be implemented by a TDTT,

but not by a BUTT. There also exist translations which can be

implemented by a BUTT, but not by a TDTT.

Example 3.2: An  arithmetic expression involving aadition,
multiplication, a constant ¢, and a variable y may be represented by a

tree over the alphabet I = {+, *, y, c}, where + and * have rank ¢ ana y




and ¢ have rank 0. We construct a deterministic top-down transducer M
which takes the formal derivative with respect to y of the expression
represented by an input tree in I_. Llet 4 = I U«,0>r where 1 and 0O

have rank Q. tet M = ({p,1}, £, A, R, {9}) "e a top-down transducer,

where R contains the following rules:

(0,4 + +0<D,x,>,<D,x,>],

(D, %) » +L*[<D,x,>,<I,x5>], *[<I,x,>,<D,x,>1],
D,y =1, (b,c) » 0, (1,0) » ¢ for o e{y,c}, and
(1,00 ~» 0[<I,x1>,<1,x2>] for o e{+, %},

The tree translation defined by M cannot be defined by a BUTT. The
main reason is due to the second rule above. With this rute, the
subtree X of an input tree *Ex1,x23 is translated two times as <D,x1>

and <I,x,> respectively. For instance,

1

+

: /\
N A

In the above transltation, y is translated two times differently (the
first time as 1 and the second time as y). But from the definition of
BUTT, we know that BUTT cannot generate this tree translation pair. on

the other hand, a translation which contains only a single tree pair
* +
cc /\ , /\ )} cannot be implemented by a TDTT because a TDTT cannot
y ¢ r o
specify finite input tree set. while this translation can be

%
'f

Y

—ain

I
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implemented by the following BUTT:

M=(ap,qq,953, {y,c,*3, 41,0,43, R, {qp})

R={y+(q1,1), c*(qz,O), (*,q1,q2)*(q0, +£x1,x23)}.

Based on the definition of GSDT given by Aho and Uliman, we propose
a simitar definition for trees, called the generalized syntax-directea

tree translation (GSDTT). It can be shown that both TDTT and BUTT are

special cases of GSOTT.

A GSDTT is defined as follows:

Definition 3.7: A generalized syntax-directed tree translation (GSDTT)
is a four-tuple F = (G, 4, T, R), where:

(1) 6 =4, £, P, S) is a regular tree grammar;

(2) &8 is a finite set of output symbols;

(3) T is a finite set of distinct translation sympbols of the form
Ti(A)’ where 1 1is an integer and A is in V - {8}, plus the symbol 51.
whenever it is possible to do so without confusion, we will denote Ti(A)
by Ai' We call Ai the i-th translation symbol asscciated with A.

(4) R is a function which associates with each production A + a 1in
P, a set of semantic rules {A1 = 84, A2 =85, eees Ay = Bm}, in which
each Bi is a tree in (T LJA)*, such that all translation symbots

appearing in Bi are translation symbols associated with nonterminals

appearing in a.

. * .
For each x in ¢ we define F(x), the set of outputs of x as

follows:

(1) If x is not in L(G), then F(x) = .

e

Iy

R aa At

e e ey
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(2) If x ic in L(G), then each parse tree with yiela x defines an
element y 1in F(x), which 1is the value of the translation symbol S1

associated with the root. The vatue of S1 is computed bottom-up as
follows:

(i) With each interior node N of the parse tree labeled A - a are
associated the translation symbols AT’ AZ’ ey Am, which are all tne
translation symbols associated with A. The values of these translation
symbols at N are computed using the semantic rules and the values of the
translation symbols at the descendants of N as follows.

(i1) Suppose {BjIO < j <k for some k} is the set of nonterminals
appearing in «a, Ai = Bi is the semantic rule for Ai and {le1 <3<k
for some L} is the set of translation symbols appearing in Si with Cj
being the translation symbol associated with B B Then V(Ai)' the value
of Ai at node N, is the tree Bi with each Cj begng replaced by V(Cj)’
where v(cj) is the value of Cj at the descendant of N which is labeled

by a B_ production. T(F), the translation defined by F, 1is the set

h.
]
{(x,y)]y ¢ F{x)}.

Theorem 3.1: For any BUTT M = (4, L, 4, R, F) there exists a GSOTT F =

(G, 4', I, R') such that M and F define the same translation.

Proof: Given M=(Q, I, 4, R, F) we can construct F=(G, A', T, R"D as

follows: Let A' = A, and G = (v, Z', P, S) where ' = L. V={Aqlq € @},

S = Aq » 9 is the accepting state and P and R' are formed as follows:
o

For each (b)Y » (g,t) in R where b ¢ Zo' a€Q te b add Aq + b, A

ql
t to P, R' respectively. For each (b, Qs ~ees qn) + (q,t) where n>U, b

e L ,q.¢cQ, tebd(X)addA *DblA ,A , ..., A I, A =+1t'toP,
n 1 *"h o Q" a9, a, Q,

R' where t' is the same as t except that each Xi in t is replaced by
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The next thing i1s to show that M and F define the same translation:
If <b,t> e M, b ¢ Xo’ t ed,, it can be found straightforwara from the
construction procedure of F that <b,t> ¢ F.

If <r,t> ¢ M, the depth of r is k and if the statement that <r',t'>
€ M =><r',t'> ¢ F holds for all <r',t'> where the depth of r' is K-1,
then suppose r=bCr1, Por sees r,d where b ¢ £,, ry € I,, the depth of r.
< K-1, Since <r,t> € M, there exists a rule in R of the form (b, .,
csey qn) + (qo, u) where a, is accepting state and u € A*(Xn), besiaes,
t s equal to the tree of u after each Xi in u being replaced by u;
where u, € M(qi,ri), then there exists a rule in R':Aq01 + u with each
X; of u being replaced by Aqﬂ and a corresponding rule in P : Aqo +
blA ,A , ..., A 1,and A_ ~+ r. (* by theorem in Brainerd L591) the

94 QZ qn qi 1

depth of all rs < k, therefore by induction we know that <r,t> ¢ M =>

<r,t> ¢ F. Similarly, we can show that <r,t> € f => <r,t> ¢ M therefore

M and F define the same transltation .

Theorem 3.2: For any TDTT M=(Q, Z, 4, R, @) there exists a GSOTT Ff=(G,
a', T, R') such that M and F define the same translation.

Proof: We prove it by constructing a GSDTT F=(G, 4', T, R') as follows:
Let G=(v, ', P, S), ' =1z, A' =4, such that L(G) = L, (x the
existence of G is proved in Brainerd [591). Let I' =V x @ i.e. suppose
the number of states in Q is m, then A1, see, AT for A e V. For
each rule in R :(q,b) + w, where q ¢ G, b ¢ En’ we s (Qx Xn) add to
R': A « u, where u is the tree of w after edch q'xi being replaced by

q

Biq’ corresponding to each rule A -+ bCB1, 82, cee, Bn] in P. Next step

is to prove that <r,t> ¢ M <==> <r,t> ¢ F: If <r,t> ¢ M and r=b, b « Lyr
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then there exists a rule in R : (qo,b) + t therefore there exists & rule
in P:S~+b, and a rule in R': Sq + t so <b,t> ¢ F. If <r,t> ¢ M ana
0

r=b[r1, ees. r 1, b e I then there exist a rule in R : (q_,b) + t'

Y
where t' ¢ 8,¢@ x Xn) and the terminal part of t' can e matched with t.

Therefore there exists a rule in P : S +» blB,, B .:s, Bl and a rule
1 27 7 "n

in R': Sq + u where Bi e V, u is the result of replacing each qx in t!
0 1

by B If the statement that <r,t> ¢ M => <r,t> ¢ F is true for all r

ig*
of depth K-1 then it's also true for all r of depth K. We already know
that it's true for K=1 therefore by induction we know that <r,t> ¢ M =>

<r,t> ¢ F. Similarly, it can be shown that <r,t> ¢ F => <r,t> ¢ M, So,

M and F define the same translation.

Example 3.3: Let £ = {+,°,y,c} be ranked alphabet, where + ana * have
rank of 2, and y and ¢ have rank 0. We construct an NGSDT G which takes
the formal derivative with respect to y of the expressicns represented

by input trees in I_, where c represents a constant. Let 4 =

{+,+,1,0,y,[,1>. tiet 6=({d,1},%,5,R,{d}), where

R={(d,+)+0(d,x,)+(d,x,)],

(d,')+E[(d,x1)'(I,x )3+E(I,x )'(d,xz)J],

2 1
(d,y)+1,(d,c)+0x U
{(1,0)+alaely,c)} |J
((1,0)+0CL,x )0 (I, x0T |oed+, 3.

This TDTT can be replaced by a GSDTT:
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1

F=(6, 8, I, R} 6=(V, I, P, )




N
AN AT N
82 ° | * | A/\\B A/\B
A//\}3 N 1 | 2 2 1

Algorithm 3.1: Parsing for GSDTT.
Input. A GSDTT F=(G, 4, T, R), G=(V, I, P, S) and an input tree pair
<r,t>
Qutput. ALl the correct parses for <r,t>. If no parse exists output
"error’.
Method.
(1) For each nonterminal A in V, order the alternates in P for A. Let
Aio be the index for the ith alternate of A. Let Aij be the index for
the jth alternate in R with respect to Aio n P,
(2) Let <u,v> be a new tree pair. A 4-tuple (X, b, L, K) will be wused
to denote the configuration of each node in a tree:
{a) X denotes the nonterminal of the node before it is rewritten,
(b) b denotes the terminal of the node after it is rewritten.

(c) L denotes the Label of the production rule for rewriting the

node.
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(d) k denotes the sequence number for counting the sequence of
rule applications.

(3) let X =5, i=1, <u,v> =<, , 0,1, (s,, ,0,1 >

1*
(4) Select the first rule of P for X. j=1.
is X

(5) replace node (X, , (, k) of u with rute on in P, If XJo

eves BmJ, then replace the node with (X, b, j, 1)[(B s U,

2’ 17
), vees (Bm, , 0, DI,

(6) Check compatibility for u and r, if compatible go to (7) else go to
(11).

(7) For each node (Xn, » 0, k) of v, where n is any number, replace it
with rule Xjn in R. If a node in xjn is a terminal b, it is written as
(Xn, b, i, 1), if a node in Xjn is a nonterminal Bm, it is written as
(Bm, , 0, 1), go to (8).

(8) Check compatibility for v and t, if compatible, go to (9), else
(12>,

(9) Check if there is any nonterminal node left in u, if yes, let X be
the next nonterminal, i=i+1, go to (4), if not, go to (10).

(10) Check compatibility for u and r, v and t, if compatiblte, find the
parse by tracing down tree u, report success and go to (12), if not, go
to (12).

(11) delete the subtree just being added to u, restore 1its root with
X, , i, k). go to (13).

(12) delete the subtree just being added to u, restore its root with
(x, », ), k), delete the subtrees being added to v, restore their roots
with (xn, s ), k) go to (13).

(13) check if there are new rules availeble for X, if yes, set j=j+1.

AP vove
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go to (5, if not go to (14).
(14) 1f x=S, then finished, exit. If not, then backtrack, take the 1

immediate father of node (X, , j, k) as new X, i=i-1, and go to (&)

(Figure 3.1 shows the flowchart for this algorithm)

Example 3.4: The translation rules of the GSDTT defined in example 3.3

is labeled, reordered and written as follows:

;
; (Sq) S * ¥ (190 g+ 1
!
(S0 § * ¢ (S,1) S; * 0
(S350 S~ /"\ (S34) 54 /*\
A B A, B,
(s

W) S~ (5497 89 » *
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(A, ) A+ + (A31) A1 - + (A32) A2 + +

(A (A41) Ay + (AQZ) A2 + .

A B . . A, B,
/N /\
A, B, A, B,
B,0) B > y (By,) By * 1 (By2) By » v
(Byy) B+ C (8,,) 8y * 0 (Bpp? By * €
(Byp) B  + (Bgq) By +  + (85,0 By +  + Y
/\ /\ \
A B A, B, AZ/ 8,
8, B+ (B,y) By » + B,,) 8, »
/\ / "\ /\
A B . . A, 8,

A//\\E g//\\B

The following diagram shows the analysis of the input tree pair

+ + |
</\ » /\ > with respect to this GSDTT: ;
c vy c 1




— . .
<Y'ST> <C'S1> <A/\B’S1> <A/\8154’
/' LR \
<Y/\B,AW/\B1> /// <g<\B,A{\§1> ) "<\ ,Ax/\f\h)
/
8 A B
</\» /i >
¢ 8A; B,
< /+\. /\ >
0

|

<C/\y,0/\>

successful analysis
report and backtrack

A more detailed diagram contairing information about eoCh noce's

configuration 15 shown as foliows:
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<ls, L0,V (5., L0, 1 Termon
“a

«s, vy, 1, 1, G

40 v S, *, b, Vilkh, L o6, Y,
&, , 4, V33, 131, L, U,

WS, <, 2, M, S,

s, 4, 3, DIG, L3, D, 8, L3, DI, (5, L0, 1
«s, v, 3, DA, , 3,1, B ,3 DI,
S,, % 3, DLW, , 3, 1, By, , 3 V>
<5, 1, 3, DI, y, 1, 2, B, ,3, DI, <(S, 4, 2, DI, *, 4, 2[4, ,
(55, +, 3, DU, L, 3, D, B, ,3 Db j 4, 2), (8, &, 2}3, 8, , 3, 1)1,
| Sy, +, 3, DL, , 3, 1, (B,
| L3 DI '
i §
rq
<(s, +, 3, DU, +, 3, D04, , B
3, 2, 8, ,3, 3,18, ,3, 1, :

Sy, +. 3, DL, , 3, D, (&, ,3 LB

17

<«S, +, 3, DA, ¢, 2, ), B, , 3, 1]

Sy, *. 3, DI, , 3, D, B, , 3 DI

17

I
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starid

tare first ryle
far X
i

rewrite X of o

]

coaeat roule
Tont nead ¢ bactrack
for X

restore A OF U

yeh

rewrite K 'y af v
i

eall

take next
nonterrinal as

report suciess

A g A gqenelale pdrse

compatibie

Flow chart for the parsing of a GSOTT

Frgure 3.1
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3.3 Stochastic Generalized Syntax-Directec Tree Translation

pefinition 3.8: A  stochastic generalized syntax-directed tree
*ranslation (SGSDTT) is a four-tuple F = (G, A, I', R), where:

(N = v, £, 7, 5} 1s 2 regular tree o Tmer;

(3]

(2) & is & finite set of output symbols;

(3) T is a finite set of distinct translation symbols of the forrm
Ti(A)’ where 1 is an integer and A is in V - {S}, plus the symbol S?'
whenever it is possible to do so without confusion, we will cenote Ti(A)
by Ai' wWe catl Aﬁ the i-th translation symbol asscociated with A.

(4) R 1s a function which associates witn a probability value p,
0 <p <1 each production A » a In P, and a set of semantic rules {A1 =
A2 = 82, ey Am = 5m}, in which each g, 18 @ tree °n (r L]A)', such

that all translation symbcis appearing 1n Ei are translet on SymDols

e,

associated with nonterminals appearing in a.

Definition 3.9: An SGSDTT is:

(a) wunrestricred 1*f for each rule p: A » 3,8 (8 s the set ot sSemantac
ru'es assoclated with A <+ 3) the probability o 1s not conoitionecd
on other rules or even*s,
proper .f for each nonterminal A the probabilities ot all rutes

which A is the leftside nonterminal sum tc 7.
Wwe consider only unrestricted, proper translation.

pefinition 3.1C: The stochastic translation from I to & produced by

with starting symbol S is the set




(¢4

(i)

)

n
f(F,S) = {(x,y,p)ix in L,y in b, P = '2:
i

p..(x,y)}
=1 J:‘] 1]

where there are n distinct standard derivations (e.g., breagth-first) of
(x,y) with f{(i) steps in the ith one, and pij(x,y) 1s the probabitity
assigned to the jtn rule of the ith gerivation.

Similar to the stochastic syntax analysis for context-free
programmed lLanguages ([10], depending on the type of stochastic selection
for the next rule, we have two distinct types of stochastic syntax
analyzer for tree transtation. The first type is one with a selection
method which searches for the most Llikely rule first, while the secona
type 1is one with a selection method which randomly selects a rule for a
nonterminal according to the distribution over all possible alternatives
for the nonterminal considered.

The stochastic syntax analyzer that searches for the most (ikely
rule first is a nondeterministic Syntax analyzer in which the rules are
arranged in descending order of magnitude ot their as$soClateq
probabilities [54]. The first rule for each nonterminal 15 the one witn
the highest probability, while the Last rule tor each nonterminal 1s tne
one corresponding to the Llowest probabiiity. Clearty, this 15 a
stochastic syntax analyzer with & fixed strategy L1uUl. The procedure
for this analyzer is given in Algorithm 5.2. A flow chart 1s shown 1n
Fig. 3.2.

The stochastic syntax analyzer with & random straetegy 15 tformea
from the nondeterministic syntax analyzer by incorporating a stochastic

selection algorithm in selecting the next rule when alternatives dre

available. At each step the conditional probabifity distribution is

-

1
:
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used in selecting the next rule among all available alternatives (101.
Suppose that there are 3 translation rutes for nonterminal A, Tie Y and
Y3 with P1, P2, P3 being their respective probabilities, and Y4 has been
previously apolied. After the backtracking, P and Yz are the only
available rules. Hence, either 72 or Y3 can e selected according 1o
their conditional probability distribution P(y2,y3[y1) = (P;,P;) where

\]
P2 = P2/(P2+P3) and P3 = PS/(P2+P3). The procedure for this analyzer is
given in Algorithm 3.3 and a flow chart 1is shown 1in Fig. 5.3.
(Algorithm 3,2 of the SGSDTT parser with a fixed strategy 1s essentially
the same as Algerithm 3.1 of the nonstochastic GSDTT parser. Algorithm

3.3 of the SGSDTT parser with a random strategy 1S a«lmost the same as

Algorithm 3.1 except the rule seiection method.)

Aitgorithm 3.2: Parsing for SGSDTT with a fixea strategy.

Input. An SGSDTT F=(G, 5, T, R, G=(v, L, P, S) and an 1input tree pair
<r,t>,

Qutput. A.L the correct parses for <r,t>, The output error” 1t no
parse exists.

Method.

(1) For each nonterminal A in V, order the alternates 1n R for A 1n
descending order of magnitude of their associated probabilities. Let
Aio be the index for the ith alternate of A. Let Ai) be the 1index for
the jth alternate in R with respect to Aio in P.

(2) Let <u,v> be a new tree pair. A 4-tuple (X, b, {, k) will be wusea
to denote the configuration of each node in a tree:

(a) X denotes the nonterminal of the node before it 1s rewritten,
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(b) b denotes the terminal of the node after it is rewritten.

{(c) | denotes the label of the production rule for rewriting the
node.

(d) Kk denotes the sequence number for counting the sequence of

rute apptlications.

(3) let X =5, i=1, <u,v> =<(, , 0, D, s, ,0,1 >

‘)I
(4) Select the first rule of P for X. j=1.
(5) reptace noge (X, , L, k) of u with rule on in pP. 1f on s X -

b(B B oo, Bm], then replace the node with (X, b, 3, 1)[(51, , U,

17 r e
1), oo, (Bm, , 0, V)1,

(6) Check compatibility for u and r, if compatible go to (7), else go
to (11,

(7) For each node (Xn, , 0, k) of v, where n is any number, repilace 1t
with rute X.n in R. If a node in X]n is a terming. b, U 15 written as
(Xn, b, j, 1), if a node 1in Xjn is a nonterminal bm, it 1S written as
(Bm, , 0, 1), go to (8).

(8} Check compatibility for v and t, 1f compdatiote, go to (Y) wvise
(12).

(9) Check if there is any nonterminal noge lett 1n u, 1t yes, Let X De
the next nonterminal, i1=i1+1, go to (4), if not, go to (1U).

(10) Cnheck compatibility for u and r, v ana t, 1f compatible, tina tne
parse by tracing down tree u, report success ana go to (12), if not, yo
to (12).

(11) delete the subtree just being added to u, restore 1ts root with

(X, , 3, k). go to (13).

(12) delete the subtree just being addea to u, restore 1its root with

A b

——r==

I
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(X, , ), k), delete the subtrees being added to v, restore their roots
with (Xn, , ), k) go to (13).
(13) check if there are new rules available for X, if yes, set j=3+1.
go to (5), if not go to (14).
(14> 1f x=S, then finished, exit, if not, then backtrack, take the
immediate father of node (X, , j, k) as new X, 1=i-1, and go to (4)

(Figure 3.2 shows a flow chart for this algorithm).

Algorithm 3.3: Parsing for SGSDTT with a random strategy.

Input. An SGSDTT F=(G, &, T, R, G=(V, z, P, S) and an input tree pair
<r,t>.

Qutput. ALl the correct parses for <r,t>. The output ‘"error" 1if no

parse exists.

Method.

(1) For each nonterminal A in V, order the alternates in R tor A. Let

Aio be the index for the 1th alternate of A, Let A]‘ pe the index tor
2

the 3th alternate in R with respect fto A in P,
(2) Let <u,v> be o new tree pair. A 4-tupie X, o, L, k) will be usea
to denote the configuration ot each node in a tree:
(a) X denotes the nonterminal of the noae betore 1t 15 rewritten,
(b) b denotes the terminal of the node after 1t 1s rewritten,
(¢) ¢ is a register denoting which ruies have been applieg tor the
node before.
(d) k denotes the sequence number for counting the sequence of
rule applications.
(3) let X =§, =1, <u,v> =<(5, ,0, M1, (81, , 0, 1) >

(4) Select the first rule of P for X statistically, set J = the 1index

L ARG

T A R I

-y

———
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of the rule.
(5) replace node (X, , L, k) of u with rule on in P. If XJo is X -

b[B1, 82, cee, Bm], then replace the node with (X, b, &', i)[(B1, , 0,

1), anes (Bm, , 0, 1, 2 = (2 OR y), where y = zj, the jth bit of the
binary form of y 1is 1, showing that the jth rule of X is now being
applied.

(6) Check compatil Lity for u and r, if compatible go to (7) else go to
an.

(7) For each node (Xn, » 0, k) of v, where n is any number, replace 1t
with rule Xjn in R. If a node 1in xjn 1s a terminal b, 1t is written as
(xn, b, ', i), if a node in Xjn is a nonterminatl Bm, it 1s written aS
(Bm, , 0, 1), go to (8).

(8) C(heck compatibility for v and t, 1f compatible, go to (9) else
(12).

(9) Check if there is any nonterminat node left in u, 1f yes, Let X or
the next nonterminal, i=i+1, go to (4), if not, go to (10).

(10) Check compatibility for u and r, v and t, it compatible, tind the
parse by tracing down tree u, report success and go to (12), »f not, go
to (12).

(11) delete the subtree just being added to u, restore 1ts root with
X, , ), k). go to (13).

(12) delete the subtree just being added to u, restore 1ts root with
x, , J, k), delete the subtrees being added to v, restore their roots
with (Xn, » s k) go to (13),

(13) check if there are new rules available for X, 1f yes, select next

rule for X statistically, set j = the index of the rule, go to (5, if
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not go to (14).

(14) If X=S, then finished, exit. If not, then backtrack, take tne

immediate father of node (X, , j, k) as new X, i=i-1, and go to (4)

(Figure 3.3 shows a flow chart for this algorithm).

”’ T. ST T
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For each nonterminal A, arrange the alternates of A
start —] in descending vrder of the magnitude of associated
probability.

v = S,Sl'
X=S
T
v
take ‘ir,t rule [
Far X 3
.|
1
rewrite X of u l

take ne~t rule backtrack

for X

restore X oof

rewrite X, 'y of v
1)

tuke next
nerter gl as

Peenfo te At
x ! I

O e o

aval lably

tertinagl

resor® (VIO L

yererale par o

Figure 3.2 Flow chart for the parsing of an SGSDTT with a fixed
strategy
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CHAPTER 4

AN APPLICATION OF TREE TRANSLATION TO TRAFFIC IMAGE SEQUENCE ANALYSIS

4.1 Introduction

This chapter gives an illustrative example of applying the tree
translation mogel described in Chapter 3 to the design of an automatic
traffic image seaquence analysis system. Traffic image 1is a popular
subject of study in time-varying image analysis. The input of the
analysis system is assumed to be a sequence of images of a traffic
intersection scene. An example is shown in Figure 4.1. 1In this system,
each input image is divided into a set of fixed-size, fixed-position
windows. fach 1mage 1is then represented as a tree of which each node
corresponds to a specific window in the image. Each node is labeled to
indicate the occurrence or nonoccurrence of a vehicle in its
corresponding window. A tree translation scheme 1is then usea to
describe *he motion of the vehicles in the image sequences. Matching of
vehicles in different 1images 1is performed in the form of a tree

translation parsing.

4.2 Scene Representation

4.2.1 1Image representation
Each image is first divided into a set of windows. An appropriate

window size 1is selected so that each window contains at most one




F oo v e s

e

Figure 4.1

(a) Sample image

(b) Data collection environment

Mg o
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vehicle. In general, the window length selected should not be greater
than the length of the smallest vehicle. Window size could be set at a
very small value. However, a smaller window size will result in a more
complex translation scheme. There are many ways to divide the image.
An example is shown in Figure 4.2. Only a part of the road area 1is
considered. A tree representation for the image is also shown in Figure
4.2. Each window corresponds to a node 1in the tree representation
regardless there 1is a vehicle in this window or not. Each vehicle is
considered as only a point. This point could be the centroid, or any
easily-recognizabtle corner-point of the wvehicle. But after this
reference point is selected, this point should be used consistently for
each vehicle 1in the whole image sequence. The centroid of a vehicle
(considering only the x-y plane) 1is selected 1in this system. A
vehicle's position is represented by the location of its centroid. Even
though one large vehicle could occupy more than one window, only the
window where this vehicle's centroid resides is considered as containing
this vehicle. If no vehicle occurs in a window, then the corresponding
node of this window 1is (abeled by '0'. If there is a vehicle in a
window, then the corresponding node is labeled by the quantization value
of this vehicle's orientation (see Figure 4.3). Additional information
(includes vehicle size, actual centroid position, orientation angle) is
attached to the node for other purposes (e.g. speed calculation,
clearing of ambiguity occurring in tree translation parsing). The
determination of a vehicle's orientation and centroid position will be

discussed later. An ambiguity of tree translation parsing means that

different time-varying activities between images result in the same
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Figure 4.2 Divided intersection area and its tree representation.
(The root of the tree is represented by an encircled node.)

Figure 4.3 Orientation primitives
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sequence of trees.

4.2.2 Motion representation
Tree translation rules are used to represent vehicle movement.
Only the movement from one window to another is described. The movement
within the same window is not considered. But the information about
vehicle's centroid position and orientation is attached to the node.
This information can be used if necessary. It 1is assumed that each
vehicle can move no more than the Llength of the smallest vehicle between

two consecutive images.

Example 4.1: Figure 4.4a shows an intersection area being divided into 4
windows. One vehicle is coming in from the south while another one is
moving toward the south. The following rules are required for this

movement:

5+ 7 0 B-0 O
/N /\ |
AL B ,A B ¢c,cC
A~ 0 , 7 c~0,3

where 0 means no vehicle existence and i means the existence of a
vehicle in direction i, 1 < i < 8.

Example 4.2: Figure 4.4b shows that one vehicle is moving from the north
to the west and two others are moving from the south to the north. Both
the (i-1)th and the ith 1images have the same intersection content.

There are two interpretations for the vehicle moving west. Either the

|

-

- AN . . e
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(a)

(b)

Figure 4.4 Intersection area contents. ("+" sign indicates the
existence of a vehicle in that direction.)
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same vehicle exists in the same window for both images or the one in the
(i-1)th image has Lleft the intersection area and a new one is appearing
in the ith image. A similar interpretation also holds for those two
vehictes moving north. There can be four different interpretations for
the variation between the (i-1)th and the ith images. But only one set

of translation rules is needed to describe this image pair.

S+ b 6 B+3 3
/N 7\ |
A B,A B ¢, ¢
A+ 0 , O c+3,3

From the assumption about vehicle speed, this problem is solved by using
vehicle position and orientation values attached to each node of the
tree. For the vehicle with label 6, if the orientation value of the
vehicle in the 1ith image 1is greater than that of the vehicle in the
(i-1)th image, then it indicates that the vehicle in the (i-1)th image
has Lleft the intersection and the vehicle in the ith image appears for
the first time and traffic flow (the number of passing vehicles) is
increased by one. Otherwise it indicates that the vehicles appearing in
the (i-1)th and the ith images are the same ones. (Orientation value is
counted counterclockwise) Ffor those vehicles moving north, the vy
coordinate of the front vehicle is used. If the y coordinate of the
front vehicle in the ith image is smaller than that of the front vehicle
in the (i-1)th imaae, then it indicates that the front wvehicle 1in the

(i-1)th image has Lleft the intersection, the front vehicle in the ith




Figure 4.5
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Conditions of the (i-1)th and ith images for which the use
of attribute value is required. (Each one of (a:' (b) ()
represents one of four similar cases. Blank windows <could
contain vehicle or not. The attribute values of node
representing lower-right window will be used for case (a)
and (b). For case (c) the attribute values of the top-
right window will be used.)
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image was the rear vehicle in the (i-1)th image, the rear vehicle in the
ith 1image appears for the first time and the traffic flow is increased . 4

by one. Otherwise it indicates that the front vehicles in both the ith

and the (i-1)th 1images are the same one and so are the rear vehicles.
There are also some other similar cases which require the use of
attribute values of each node to resolve such an ambiguity. Their
corresponding translation rules are specified for the requirement of the
comparison between node attribute values of 2 input trees. Figure 4.5

shows the various cases in which a comparison of node attribute value is

required.

4.3 Scene Analysis

4.3.1 Feature extraction

bue to the similar property in feature extraction between this
experiment and You and Fu's shape recognition experiment (13], the
algorithms for boundary following and boundary smoothing described in
C13] are applied for feature extraction,

The first step in feature extractior 1is threshold selection.
Because of the flat black paint on the models, the vehicles look
uniformly dark and should create a peak in the high gray level region of
the histogram. The Light background is supposedly uniform too and
create a peak in the low gray level region of the histogram. A typical
histogram of the experiment is shown in Figure 4.6. The pcak at gray

level k, is caused by the vehicles. The peak at gray Llevel k2 is caused

1
by the background. The selected threshold is t.

Algorithm 4.1: Threshold Selection
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Input: A digital picture.
Output: A threshold t.

Method:
(1) Compute the histogram.

(2) Find the peak of the highest gray Llevel (which wusually
corresponds to the object). Let k1 = the gray level.

(3) Find the second peak of the histogram besides the one found in r
(2). Let k, = the corresponding gray level. :

(4) Find the lowest valley between the above two peaks and let t =
gray level corresponding to the valley.

(5) Terminate. 5
4

After a threshold is found, the boundary for each vehicle can be f

traced out. The boundary is defined as a connection of edges between
the object and the background. The boundary is coded by unit vectors

with horizontal and vertical directions. Each boundary is traced out by

the following boundary following algorithm which i1s led by the contents
of a 2x2 window. Figure 4.7 shows the four possible configurations. H
The pixels A, B, C, and 0 are defined relative to the boundary vector P,

The object is to the right of P, so that A is darker than the threshold

t. The background 1s to the Lleft of P, so that C is lighter than t. 1In
the following algorithm, u, and uy are the unit movements, or unit
vectors, in the X and Y directions respectively. A, B, C, D denote the
coordinates of the pixels. G(B) 1is the gray Llevel of the pixel

indicated by B. F is the first pixel of an object detected by scanning

the image.

s Algorithm 4.2: Boundary Following (You and Fu [131)

f Input: F, ux, uy, and threshold t.

Output: A boundary chain U of 1 unit vectors.
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| Figure 4.6 A typical histogram of the experiment

c|o 0D [ B
p
R 7,
P
(a) (b)
P
% ¢
B . %
D | ¢ 8 | o
(c) (d)

Figure 4.7 Four possible configurations of boundary following window
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Method:
(1) Set P = u., i=1, U =°P
A=F, C= F—uy, s =, go to (3)

(2) If (S = C) then terminate

otherwise 1 = i+1, U(i) =P
(3) D = C+P

If (G(P) < t) then go to (4)

otherwise P = C~A, A = D, go to (2)
(4) B = A+P

If (G(B) < t) then go to (5)
otherwise A = 8, C = b, go to (2)

(5) C=8, P =8~Dgo to (22

The output from the above boundary following algorithm is a string
of wunit vectors. Due to the digitization grid, there are many zig-
z39's. A smoothing method (You and Fu £13]) is applied to transform a
string of unit vectors into a string of longer vectors. This method is
defined in the form of an attributed finite transducer.

In the following definition, qj's are attributed states. Each
state qj represents a subchain sj which is accepted by not transtated,
and which is described by the associated attributes. iv denotes a
series of wunit vector v, or & times v. =v is the negative of v, i.e.,
-v and v have the same length but opposite directions. A A B denotes
that B8 follows A. § 1is a mapping from @ x I, under condition C, to
finite subsets of Q@ x 0. The mapping performs when condition C is

true. For each state transition, there is a set of attribute rules.

r
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The attributes of a state may be unit vectors or numbers. In the

transition rule, i, m, n, v, u are unit vectors and p, q, %, k are

numbers. The attribute conditions for a transition are described above

the right arrow. For each transition, the input unit vector is compared

with the vector attributes and the attribute <conditions are checked.

Then the machine goes to the next state with the appropriate output and

transfers the attributes according to the attribute rules. Each

expression of the output is a vector ¢ 0. An example of the smoothing

effect

A

of this transducer is shown in Figure 4.8.

Definition 4.7: Attributed Finite Transducer A

is a 6-tuple, (@, I, 0, §, S, F).

I = the input set consisting of 4 unit vectors and an end marker §,

{1,

0 =

(n., =
i

Q= a

q0:

,€0,-1),=1,0,¢0,1),$2
the output set, {(n1,n2)|(ni = O,n3_i £ 0) or
1, Ns_; = any integer), i = 1,2}

set of states with attributes, {qj|j = G,...,9}

s = A, empty
s1 has one unit vector v

s2 = tv,— , L > 1
LV

v
viu "1uclr_1

s3

(O

T O DT
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-

(a)

-

(b)

Figure 4.8 (a) Detected boundary (b) Smoothed boundary
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(q2p'm,$) + (q0,pm)
(q3m'n,$) + (cQ,m+n)

(q4p’m’n,$) + (q0,pm+n)

(qu’n,$) + (g0,n)
(qém’n,$) + (q0,2m+n)

(q7p,m,n,q’$) + (g0, (p+qim+n)

(qQ8 $) - (q0,m+qn)

m,q,n’

(q9p’m’n’q,$) +~ (g0, (p+qIm)
4.3.2 Shape analysis

Consider the top view first. An attributed shape grammar 1is
adapted for vehicle shape representation [13]. To find the orientation
and the centroid position of a vehicle, special symbols are marked in
the production rules of the shape grammar to specify which pair of angle
points can be used to find the orientation and which pair of angle
points can be used to find the centroid position. Suppose that a

*

derivation of a shape contour is § =+ F1A1 aee FiAi e FjAj eee Am,

where F's are curve primitives and A's are angle primitives, and it is

known in the grammar inference stage that the direction of the Line

T e e —————
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segment extending from the point of angle Ai to the point of angle Aj
decides the orientation of this vehicle and 3t is also known from
parsing that this derivation generates the input boundary string V1 eee
v ene V eee V_ with substring Vp v Vq matching F1+1 eee F.u

p q n J
Then the position of angle Ai (Aj) is the same as the position of the

p+1 "

breakin oint between vectors V and V V_and V ). Therefore the
sp p-1 p Yq g+

orientation of this vehicle is decided with the knowledge of x and vy
coordinates of these two breaking points which 1is obtained in the
feature extraction stage. The centroid position is calculated
similarly. Suppose that the midpoint of the line segment connecting the

angtes A, and A, is the centroid. Then the centroid position is decided

(3 L
from the x and y coordinates of the angle points of Ak and AL' You and

Fu's [13] PEE Earley's parser is used for vehicle shape recognition.
for examplie, consider a vehicle shape shown 1in Figure 4.9. The

shape 1is represented as S » F1A1F2A2F3A3F4A4. The midpoint of the Lline

segment connecting the angles AZ and A, is the centroid. The direction

4

of the Lline segment connecting the angles A1 and A2 determines the

orientation of the vehicle. After knowing that A1 is located at

(x1,y1), A2 is located at (x2,y2) and A3 is located at (x3,y3), then the
centroid position is found to be ((x2+x4)/2, (y2+y4)/2) and the
orientation of the vehicle has the slope (y2-y1)/(x2-x1). The question
about whether the actual direction should be from A1 to A2 or from A2 to

A will be discussed shortly. Strictly speaking, for a simple shape

1
like the top view of a vehicle, the shape analysis method described

above is not really necessary. For instance, an easy way to calculate

the centroid (xc,yc) of a vehicle is to apply the formula: xc=2:x1/n,
i

e a e b
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yc=z:yi/n, where the summation is taken over all points on the boundary
and1 n is the total points on the boundary. The orientation can also be
easily determined after searching for the right angles around the
boundary and finding out the longest line segment between these angles.
But compared with this simple method, the method described earlier in
this subsection does serve as a way for the determination of the
centroid and orientation of a general shape.

bue to the symmetrical property of the top view of a vehicle, a
vehicle 1in any direction could have two possible opposite orientations.
For example, the shape of a vehicle moving northwest could also be
evaluated as southeast - oriented. This problem 15 solved as follows:
Consider a vehicle located in the lower-right window of the intersection
area. 1f its shape is detected as horizontally oriented (either to the
east or west), then it is considered as moving east with orientation 1.
similarly, if 1its shape is detected as vertically oriented, then it is
considered as moving north with orientation 3. If 1its shape is
northwest - oriented (in other terms, southeast - oriented), it could
have orientation 4 or 8. this ambiguity is resolved from the knowledge
of the Llast image and the assumption about vehicle movement Limitation
between conszcutive images. Specifically, if there exists a vehicle
with orientation 8 in either the lower-left or the lower-right window of
the intersection area in the (i-1)th image, then this northwest-oriented
vehicle in the Llower-right window of the ith 1image should have
orientation 8 instead of &, Otherwise this vehicle should have
orientation 4. For a northeast-oriented vehicle in the lLower-right

window, there 1is only one choice: orientation 2. The way of

I UV Rr S

¢
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«
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determining the orientation of vehicles in the lower~right window
described above also applies to other windows.

when an input image does not represent the top view, the vehicle
shape variation and occlusion problems happen. Ffor shape variation and
simple acclusion, the problem can still be solved with the help of a
generalized error-correcting PEE parser (GECPEEP) [13]. But when the
number of vehicles appearing in the ‘scene increases, a serious occlusion
would make the extraction of vehicle centroid position and orientation
information very difficult. Therefore, in order to make the monitor
working even under heavy traffic conditions, it would be better to use

the top~view of the scene as the input.

4.3.3 Tree translation parsing

After the tree representation for the ith image is obtained, it is
parsed by the tree translation parser along with the tree representation
for the (i-1)th image. (Parsing process starts from the second image.)
The translation parser is similar to the one shown in Chapter 3. But as
mentioned before, some configurations of input tree pair still require
the use of attributes attached to the node to decide the actual activity
between two consecutive images. After the parsing, the parser either
reports the output or asks for a comparison of attribute values. (The
conditions requiring the use of attributes and which attributes to be

used have been discussed earlier and illustrated in Figure 4.5.)

4.4 Inference of a Structure-Preserved Tree Translation Schema
The tree translation involved here js structure-preserveda (in other

words, substitution transformation only). The inference of the tree

g
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transiation schema is therefore esséentially a tree grammar inference
problem: Let Y be the input alphabet, & be the output alphabet of a tree
translation and st = {<x1,y1>, <x2,y2>...} be the tree translation
sample set. L and Y; have the same tree structure. form a new
alphabet 2:’ =Y x A. Transform each tree pair <xi'yi> into a single
tree over 2:' by combining the (abel of each node of X5 and the label of
its corresponding node of Yse The tree translation sample set s* is now
transformed into a set of tree samples. Apply the conventional tree
grammar inference procedure (Moayer and Fu [611) to infer the tree
grammar which can generate these tree samples. Then transform this tree
grammar into the required tree translation schema by converting each
production rule into a tree transtation rule. (e.g. if A » /f?g\ is a
B B

rule of the tree grammar, where a ¢ Yand b ¢ A, then the con@ertea tree

b
/oeN\ ). The whole procedure is
B

1 n

a
translation rule is A+ .\ ,
31 B B

given as follows:

Algorithm 4.3: Inference of a structured-preserved tree translation
schema
Input: A tree translation sample set S+ = (<x1,y1>, xz,y2>...<xn,yn>},

where X and Y4 have the same tree structure (tree domain),
input alphabet 3 and output alphabet 4.

Output: a tree translation schema which generates S+.

Method: 1. Let T = T xa, st =,
2. For each Xy e S+,

add a tree (a: D » f:') to S*+,

where D is the domain of X, and Yie

a(b) = axi(b)ayi(b) for b ¢ D,
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a; and ayi are the tree function for xi and yi respectively.

3. Irfer a tree grammar for s*t (Moayer and Fu L[611]):

Step 1: Selection of proper substructures, here the aim is to
select components which have high-repetitive
occurrence.

Step 2: Infer subgrammar Gi for each substructure

Step 3: Let G be the union of the subgrammars G, inferred in
stép 2. Relabel the variables and eliminate redundant
production rules *o eliminate ambiguity and erroneous
generation paths.

4. Form a tree translation schema T(2.,4,v,R,S) by adding one

rule A » ,C?E\ , ,4?\\ to R for each rule A -+ /4??\ of the

B B B B 8 B
grammar generatgd i% 3. " 1

n

Consider the tree translation involved in the traffic scene as an
example, The input alphabet and output alphabet are
z = a = {0,1,2,3,4,5,6,7,8). To reduce the number of samples,
consider only the 1image pairs 1in which no vehicle exists in the
intersection area of the first image and one vehicle comes into the

intersection area of the second image. The tree translation sample set

contains:
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0—0 0~0 0—0
<t .t 0>, <0 1,1
00 10 00 2

A

—0
L >.
0

;

ogieans

These tree translation samples are transformed into trees over 2. x A.

Then a tree grammar is generated from these tree samples. For example,
0—0 0—0 00—00

< | |, | > becomes | |- The tree sample set contains:

0 0 0 2 00 02

00—00 00~—00 00~00

SRS P U P B
00 02 00 03 00 04

T e S P

00—04 00—05 00—06

S N N L T
00 00 00 00 00 00

il N e
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06—00 07—00 08—00

l P T P |
00 00 00 00 00 00

00—-00 00—00 00—00

l L, b, | L
08 00 07 00 02 00

The resulting tree grammar contains the following rules:

00 00

s+~ /\ s+ '\
A, B Ay B,

00 00

s+ /\ 5+ /\
Ay By A, B,

00 00

s+ /\ s+ /\
Ay B Ay B

06 07

s+ /\ s~ /\
A, B A, B

08 )

s+ /\ s+ /\
A, B A, B,

00 00

s+ /\ s+ /\
Ay B Ay B

- B, SO R g -ribietiiiiessne
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00 00
B1¢L 52->|
4 1
00 04
B * l B, * |
2 1
0s 06
Be * | B, *+ |
S 6
A, Ay
00
8, + |
A4
Ay~ 00 A, + 08
Ay + 01 A, * 02
¢, + 03 ¢, *+ 04

where S, A1,...,A4, B1,...,87, C1 and C2 are nonterminals.
The resulting tree translation schema contains the following

translation rules:

0 0 0
S’A/\’/\ S » /\ ’ /\

1 81 A 1 B1 A1 BZ A 1 B2
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0 0
B, + | l
7 ’
Ay A
Ay 0,0 A, + 0,8
Ay >0, 1 A, * 0,2
¢, 0,3 ¢, *0,4

Since there are 4 windows in the intersection area, there are &
nodes 1in each tree and 8 nodes in each translation pair. There are 9

different possible labels for each node: {0,1,2,...,87. Tnecretically,
4 different trees and 98 different translation pairs. But
0—0 0—0
after deleting some unrealistic cases (e.g., a tree iike | | or | | is
0—0 0—-0 (G 5 o 7
not reasonable, a translation pair like < | | , | | > is not possible
0 3 0 0
due to the assumption about speed limitation), there are 25 different

there are 9

tree patterns and 186 different translation pairs left. These 186
translation pairs are divided into 2 groups. No vehicle moves out of
the intersection area for each translation pair of group I, while one or
more vehicles have moved out of the intersection area for each
translation pair of group II. Group 1 consists of 70 members. The 12
translation pairs given in the above inference example are part of these
70 pairs. Group 11 consists of 116 members. These 116 translation
pairs are further classified 1into 12 subclasses according to the
specific traffic type. These 12 subclasses are EW, ES, EN, WE, WS, WN,
SE, SW, SN, NE, NW and NS, where E, W, S and N denotes east, west, south

and north respectively and EW represents the subclass of transiation

e ey et
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pairs for which one vehicle has moved from the east to the west and left
the intersection area, ES represents the subclass of translation pairs

for which one vehicle has moved from the east to the south, etc. For

0—3 0—0 0—4 0—0
example, < | | , | | > belongs to the subclass SN and < | | , | | >
0 0 0 0 0 0 0 ¢
belongs to the subclass EN. There are some translation pairs which
0—3 0—C
belong to more than one subclass. Ffor examptle, < | | , | | > belongs
7 0 0 u

to both subclasses SN and NS.

4.5 Implementation

The whole experiment of traffic image sequence analysis was set up
in the Llaboratory of pattern processing and advanced automation at
Purdue University. The set-up for data collection is shown in Figure
4.1.b. A white background with black vehicles 1is used for the traffic
scene. Road areas and non-road area were specified. The digital
picture sequence was taken directly through a TV scanner which is
located above the traffic intersection. The digitization process was
controlled interactively through a PDP 11/45 computer in the laboratory.
Before digitization, we adjustea the relative distance and the focus of
the TV scanner to obtain a reasonably clear picture on a TV monitor.
Then everything kept stationary except the vehicles during the
digitization of the whole image sequence. After each digitization of a
picture, the vehicles were moved to new locations for the next picture.

The traffic analysis system using the proposed tree translation
parsing is 1implemented in Fortran IV under Unix system on a PDP11/45
computer. The average time required for the analysis of one image 1is
about 15 seconds (the actual computer time for each individual image

depends on the number of vehicles in the image). About 90% of the time

-
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Start

Feature Extraction
boundary vector string generator

¥

Shape analysis
tree representation generation

Tree translation parsing

e T

Figure 4.10 Flow chart for the analysis of each image (A flow chart for
tree translation parsing is given in Figure 3.1.)
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is spent on the feature extraction and the shape analysis for tree node
Llabeling.

Figure 4.11 shows the image contents of some of the image sequence.
Figure 4.12 shows their corresponding tree representations around the
intersection area. The correspondence between the nodes and the
windowed regions is shown in Figure 4.2. The 8 nodes corresponding to
the windows surrounding the intersection area are included to indicate
where the wvehicles come from and where they go. Figure 4.13 shows the
traffic information extracted from the image sequence. This experiment
illustrates an example of the application of tree translation models to
the analysis of time-varying patterns. In chapter 2, we let L1 denote
the set of pattern representations of soﬁe object occurring at time t1,
L2 denote the set of pattern represenations occurring at time t2 and use
the concept of translation to model the relation between L1 and L, (or
the time-varying process of the pattern representation between time t1
and time t2). In this traffic scene experiment, the "object' under
study is the content of the intersection region in a traffic scenre. L1

and L, are a set of trees a: D + I, where D is the tree domain

2
{0,0.1,0.2,0.2.1} and © is the primitive set {0,1,2,3,...,8}. Actually
L1 and L2 are the same set. As mentioned in section 4.4, L1 (or LZ) has
25 patterns and there are 186 possible translation pairs between L1 and

L These 186 translation pairs are divided into 2 groups. Group 1

2.
involves no traffic flow out of the intersection area. Group 11
involves traffic flow and is further classified into 12 subclasses. At

each time instant t=ti, the tree representations of the (i-1)th and i-th

images are parsed to decide the membership. If they belong to group I,



118

then there is no traffic flow out of the intersection area and no
information update 1is required. If they belong to group 11, then an
action for the specific subclass 1is taken: update the traffic
information for the specific path. For example, the tree

representations of the intersection area for image SC01 and 1image SC02

0—>5 5—0
of Figure 4.11 are | | and | | which are generated by the following
cC O 1 0
translation rules:
0 5 5 0
s1- /\ , /N Bl2+» | , |
A3 B12 A3 B12 c3 3
A3+ 0 , 1 3+ 0 , 0

They belong to group I. Therefore no action is taken and the traffic

information is unchanged. At the next time 1instant, the tree

5—0
representations for image SC02 and image SC13 of Figure 4.10 are | |
0—0 1 0
and | | , which are generated by the following translation rules:
0 1
5 0 0 0
$2 + /\ ’ 7/ N\ B17 + i , |
A12 B17 A2 B17 €13 €13
M2+ 1 , O €13+ 0 , 1

They belong to the subclass EW of group I1I. Therefore the traffic
information is updated and the number of vehicles moving from the east
to the west is incremented by one. (In case that a translation pair
belongs to two subclasses as mentioned 1in section 4.4, then it is

required to update the traffic information of the paths specified for
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both subclasses.) The image sequence of this experiment does not have
any significance of physical meaning. It is only used to show how the
analysis system is applied. (Since there are 186 possible translation
pairs (in other words, 186 time-varying patterns between consecutive
images), in order to go through all of the time-varying patterns, the
required number of images is far greater than 186. It is similar to the
input sequence required to test every state transition of a finite-state
machine.) This experiment shows a form of pattern recognition system
under time-varying situation. It also demonstrates one way to extract
information from an 1image sequence through a series of pattern
translation operations. On the other hand, although the testing image
sequence is successfully analyzed, further improvement of the system is
still required. Similar to the cases of (Chow and Aggarwal (43]) and
Aggarwat and Duda [42], this system assumes a fairly simgle image
condition for preprocessing. Therefore, to make the system working
under noisy conditions, more sophisticated feature extraction technique

will certainly be required.

4,6 Conclusions and Discussions

While many traffic scene~related research activities [23,68,69,801
concentrate on segmentation techniques, the proposed traffic analysis
system emphasizas the representation of vehicle motion and assumes that
there is Little difficulty in segmentation, which is the main assumption
of the system. The advantages of the proposed system include: (1) each
moving object (vehicle) 1is allowed to have movement ranging from 0 to
the length of the smallest vehicle between consecutive images, (2) the

matching process 1is performed through a tree translation parsing which
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is very efficient 1in processing, (3) there 1is no need to do
sophisticated prediction wusing 1information of the past history, (4)
there is no need to keep the past dinformation except the tree
representation of the last image, and (5) the ability to describe an
image scene and to model an image sequence. The experiment conducted
here 1is 4 2-lane traffic. When the number of traffic lanes increases,
the required analysis system is essentially the same except that more
windows are required and the corresponding tree representation contains
more nodes. Figure 4.14 shows a 4~lane example. There are 16 windows

in the intersection area. The scene is represented as a tree with 16

nodes.
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sco sC05
0 0 0 0
0—0—5—0 0—0—5—0
1—Q 0—0 0—0 0—0
0 3 0 3
sC02 sC06
0 0 0 0
0—5—0—0 0—5—0—0
0—1 0—0 1—0 0—0
0o 3 0 3
SC03 sco7
0 0 0 0
5—0—0~—0 5—~0—0—0
0—0 10 0—1 0—0
0 3 0 3
SC04 SCO8
0 0 00
0—0—0-5 0~-0—0-0
0—0 01 0—0 1—0
0 3 0 3

Figure 4.12 Tree representations for the images of
Figure 4.11.
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root)
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusions

A syntactic method for the analysis of time-varying image patterns
is proposed and studied. This method utilizes a translation schema to
model time-varying properties. A syntactic deformation model 1is first
applied to transform the i-th image into the (i+1)-th image of an image
sequence. Then the concept of translation in formal language theory s
used as a mechanism to characterize the dynamic process of the sequence.
In order to analyze high~dimensional patterns, the string translation
schema 1is extended to that for trees. Formulation of stochastic
translation is also presented for the modeling of stochastic properties
of time-varying patterns.

A traffic scene analysis problem is analyzed using the proposed
method. Each 1input 1image 1is presented as a tree structure. Tree
translation is used to model the variation of 1image content between
consecutive 1images. A parsing algorithm for the tree translation is
applied to match vehicles in each pair of consecutive images. The
advantages of this system are: (1) Each moving object is allowed to have
Larger flexible movement between consecutive images, (2) the matching
process is performed through a tree translation parsing which is very

efficient in processing, (3) there 1is no need to do sophisticated

it .

e e

20




126

prediction using information of the past history, (4) there is no need
to store the past information except the last image, and (5) has the
potential for simulation of the time-varying process. This system
assumes little difficulty in the segmentation of moving object, which is

its main limitation.

5.2 Ssuggestions for Further Research

The problem of time-varying pattern analysis is & new research
topic and 1is getting increasing attention. Although the results from
the proposed syntactic method appear to be quite satisfactory, there are
still some topics requiring further investigations.

(1) The translation models studied in this report include string
translation and tree translation models. There are some other patterns
which are better being represented as graphs [(10,96,98,991]. Recently
Jacobus, Chien and Selander analyze the similarities in the structure of
abstract forms produced from stereoscopic motion picture sequences using
a8 graph matching technique [72]. A pair of images contains the scenes
of a 3-D object before and after the movement. The informtion
concerning the boundary and surface of the object at each image is
represented as a graph. A graph matching method is us=d to match the
corresponding parts of the two graphs (assuming small overall movement).
In order to make graph representation applicable for general time-
varying patterns, it would be desirable to study graph Language
transltation and stochastic graph translation.

(2) You and Fu [13] study the syntactic shape recognition using
attributed grammars with promising results. Tsai and Fu [14,96] report

an attributed pattern deformation model and find that sometimes it is
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more powerful tc use attributed pr mitives than discrete primitives. 1In
order to take attributes into consideration in time-varying pattern
problems, one way is to extend the translation models to translation
models with attributes: attributed string translation, attributed tree
translation and attributed graph translation.

(3) Tree translation is applied to analyze traffic image sequence
in Chapter 4. In order to further understand the usefulness of tree
translation, it would be desirable to study traffic scenes using tree
translation through an extensive simulation experiment.

(4) The problem of cardiac motion analysis is getting more
attentions £91,92,93,94,951]. The wuse of computerized tomography
technology is also becoming more popular. It would be interesting to
study the applicability of the translation models described in this
research to the problem of heart wall motion representation, or more
generally, to the problem of representation of data extracted from

computerized tomography.




LIST OF REFERENCES




£11

21

€31

{43

€53

£é]

€71

{8l

[93

£101

{111

£121

£131

128

LIST OF REFERENCES

K. S. Fu, Sequential Methods in Pattern Recognition and Machine

Learning. Academic Press, New York, 1968.

K. Fukunaga, Introduction to Statistical Pattern Recognition.
Academic Press, New York, 1972.

E. A. Patrick, Fundamentals of Pattern Recognition. Prentice-
Hall, Englewood Cliffs, New Jersey, 1972.

H. C. Andrews, Introduction to Mathematical Techniques iﬂ Pattern

Recognition, Wiley, New fork, 197¢.

R. 0. Duda and P. E. Hart, Pattern C(lassification and Scene

Analysis. Wiley, New York, 1973.

C. H. Chen, Statistical Pattern Recognition. Hayden, Washington,
D.C., 1973.

K. S. Fu and P. H. Swain, On Syntactic Pattern Recognition, In
Software Engineering (J. T. Tou, ed.), Vol. 2, Academic Press,

New York, 1971.

W. F. Miller and A. C. Shaw, Linguistic Methods 1in Picture
Processing-a Survey. Proc. AFIPS Fall Joint Comput. Conf., San
francisco, 1968, pp. 279-290.

Patte~n Recognition 3 (1971);4 (1972). Special “:sues on
syntactic pattern recognition.

K. S. Fu, Syntactic Methods in Pattern Recognition. New York,
Academic Press, 1974.

S. Y. Lu and K. S. Fu, Stochastic error~correcting syntax
analysis for recognition of noisy patterns. IEEE Trans. on

Computers, Vol. (=26, No. 12, Dec. 1977.

S. Y. Lu and K. S. Fu, Error-correcting tree automata for
syntactic pattern recognition. 1EEE Trans. on Computers, Vol.
C-27, Nov. 1978.

K. C. You and K. S. Fu, Syntactic shape recognition using
attributed grammar. Technical Report TR-EE _1§j§§, Purdue
University.

B

ey e vt amim e




o TTTTTVT N T T T

(143

£151

163

171

£18]

€193

£201

{211

[221

[23]

£24]

£25]

€261

€27l

129

W. H. Tsai and K. S. Fu, A pattern deformation model and payes
error-correcting recagnition system. Technical Report TR-EE
78-26, Purdue University.

A. A. Arking and R. (. Lo and A. Rosenfela, An evaluation of
fourier transform techniques for <cloud motion estimation,
Computer Science Technique Report TR-351, University of Marylana,
Jan. 1975.

!
Abstracts of the workshop on computer analysis of time-varying
imagery. April 1979.

H. Nagel, Analysis techniques for image? sequences, 1978
International Joint Conference on Pattern Recognition.

-Ja A. Leese, C. S. Novak and V. R. Taylor, The determination of

cloud pattern motions from geosynchronous satellite image data,
Pattern Recognition, 2, 1970, 279-292.

R. P. Futrelle and G. C. Speckert, Extraction of motion data oYy
interactive 1image processing, 1978 Proc. of Pattern Recognition
and Image Frocessing Conference, 405-408, Chicago, IliLinois.

W. N. Martin and J. K. Aggarwal, Survey: Dyremic scene analysis.
Computer Graphics Image Processing, 7, 1978, 356-374.

L. F. Hubert and L. F. whitney, Wind estimation from
geostationary satellite pictures. Monthly Weather Review, 99,
1971, 665-672.

K. Wolferts, Special problems in interactive image processing for
traffic analysis. 1974 International Joint Conference on Pattern
Recognition, 1-2.

M. Onoe and K. Ohba, Digital 1image analysis of traffic flow.
1976 International Joint Conference on Pattern Recognition,

803-808.

R. T. Chien and V. C. Jones, Acquisition of moving objects and
hand-eye coordination. 1975 International Joint Conference on

Artificial Intelligence, 737-741.

R. Jain and H. H. Nagel, On a motion analysis process for image
sequences from real world scenes. IEEE workshop on pattern
recognition and artificial intelligence, Princeton, N.J., 1978.

C. A. Rosen and D. Nitzan, Use of sensors 1in programmable
automation. Computer, 10, Dec. 1977, 12-23.

8. Neumann, Interpretation of imperfect object contours. 1978
International Joint Conference on Pattern Recognition.

.

i giohg



130

{28 T. Uno, M. Ejiri and T. Kogunaga, A method of real-time
recognition of moving objects and its application. Pattern
Recognition, 8, (1976), 201-208.

[29]) R. Eskenazi and R. T. Cunningham, Real-time tracking of moving
objects in TV images. 1EEE workshop on Pattern recognition and
artificial intelligence, Princeton, N.J., 1978.

{301 C. K. Chow and T. Kaneko, Automatic boundary detection of the
Left wventricle from cineangiograms. Computers and Bimedical
Research S (1972) 388-410.

{313 ¢. K. Chow, S. K. Hilal and K. E. Nigbuhr, X-ray 1image
subtraction by digital means. 1BM J. Res. Develop. 17 (1973)
206-218.

{321 K. Hachimura, M. Kuwahdara and M. Knoshita, Left wventricular
contour extraction from radioisotope angiocardiograms and
classification of left ventricular wall motion. 1978
International Joint Conference on Pattern Recognition.

(33 S. A. Johnson et al., Bioimage synthesis and analysis from x-ray,
gamma, optical and ultrasound energy. Digital Processing of
Biomedical Images, (K. Preston and M. Onoe eds.) 1976, 2U3-226.

[34] G. T. Herman and H. K. Liu, Dynamic boundary surface detection.
Computer Graphics Image Processing 7, 1978, 130-138.

{353 H. K. Liu, Two- and three-dimensional boundary detection.
Computer Graphics Image Processing 6, 1977, 123-134.

(361 P. H. Heintzen et al. Automated video-angiocardiographic image
analysis. Computer 8, 1975, 55-64.

£37) M. Yachida, M. Asada and S. Tsuji, Automatic motion analysis
system of moving objects from the records of natural processes.
1978 International Joint Conference on Pattern Recognition.

i £381 D. Dpavenport et al. The investigation of the behavior of
microorganisms by computerized television. IEEE Trans. on
Biomedical Eng. BME=17 (1970) 230-237.

£39] Y. Ariki, T. Kanade and T. Sakai, An interactive image modeling
and tracing system. 1978 International Joint Conference on
Pattern Recognition.

{40]) M. Takagi and K. Sakaue, The analysis of moving granules in a
pancreatic cell by digital moving 1image processing. 1978
International Joint Conference on Pattern Recognition.




[41]

£42]

{433

£44]

[45]

£46]

£47]

£48]

£49]

€501

€511

€523

{533

£541

131

R. C. Lo, and J. A. Parikh, A study of the application of Fourier
transforms to cloud movement estimation from satellite
photographs, Computer Science Technical Report TR-242, University
of Maryland, 1973.

J. K. Aggarwal and R. 0. Duda, Computer analysis of moving
polygonal images, IEEE Trans. Computers, C-24, Oct. 1975,
966-976.

W. K. Chow and J. K. Aggarwat, Computer analysis of planar
curvilinear moving 1images, IEEE Trans. Computers C~26, 1977,
179-185.

J. L. Potter, Scene segmentation by velocity measurements
obtained with a cross-shaped template, &4IJCAI, pp. 803-808,
Tbilisi, Georgia, U.S.S.R., Sept. 1975.

R. Nevatia, Depth measurement by motion stereo, Computer Graphics
Image Processing, 5, 1976, 203-214.

M. S. Ulstad, An algorithm for estimating small scale differences
between two digital 1images, Pattern Recognition, 5, 1973,
323-333.

R. L. Lillestrand, Techniques for change detection, IEEE Trans.
Computers €=21, 1972, 654-659.

G. G. Pieroni, A method for analyzing dynamic processes
represented by chains of maps.

Y. Ariki, A system for analyzing time-varying image patterns,

0. T. vonRamm, F. L. Thurstone, Cardiac imaging using a phased
array ultrasound system. I. System Design. C(irculation. Vol.
53, No. 2, pp. 258-261, 1976.

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,
and Compiling, Vol. 1, Englewood CLiffs, N.J.: Prentice-Hatll,
1972.

L. W. Fung and K. S. Fu, "Stochastic syntactic decoding tor
pattern classification," IEEE Trans. on Comput., Vol. (-24, ho.
6, July 1975.

P. J. Rosenkrantz, programmed grammars--a new device for
generating formal languages, Ph.D. dissertation, Columbia Un'v.,
New York (1967).

P. H. Swain and K. S. Fu, '"Stochastic programmed grammars tor
syntactic pattern recognition,” Pattern Recognition, Vol. &4,
1972.




€551

[56]

€571

£581]

€593

€601

[61]

£621

L63]

L64]

£651]

L661]

[67]

132

K. S. Fu and B. K. Bhargava, 'Tree systems for syntactic pattern
recognition," 1EEE Trans. on Comput., Vol. C-22, No. 12, Dec.
1973.

S. W. Zucker, "Toward a model of texture," Computer Graphics and

Image Processing, 5, 1976, pp. 190-202.

A. V. Aho and J. D. Ullman, Translations on a context-free
grammar, Inform. Contr. 19, 1971, 439-475.

B. Baker, Generalized syntax directed translation, tree
transducers, and linear space, SIAM J. on Computing, Vol. 7, No.
3, Aug. 1978.

W. Brainerd, Tree generating regular systems, Information and

Control, 14, 1969, pp. 217-231.

H. C. Lee and K.-S. Fu, "A stochastic syntax analysis procedure
and its application to pattern classification,” IEEE Trans.

Comput., Vol. €-21, July 1972, pp. 660-666.

B. Moayer and K. S. Fu, "A tree system approach for fingerpring
pattern recognition,” IEEE Trans. on Comput., Vol. C-25, No. 3,
March 1976.

S. Y. Lu and K. S. Fu, A syntactic approach to texture analysis,
Computer Graphics and lmage Processing 7, 1978, 303-330.

S. Y. Lu and K. S. Fu, Stochastic tree grammar inference for
texture synthesis on discrimination, 1978 Proc. of 1EEE Pattern
Recognition and Image Processing Conference, Chicago.

R. C. .o, J. Mohr and J. A. Parikh, Applications of Fourier
transform methods of cloud movement estimation to simulated and
satellite photographs, Computer Science Technical Report TR-292,
University of Maryland, 1974.

R. C. Lo and J. Johr, Application of enhancement and thresholding
technigues to Fourier transform cloud motion estimates. Computer
Science Technical Report TR-326, University of Marlyland, 1974.

E. A. Smith and D. R. Phillips, Automated cloud tracking using
precisely aligned digitalt ATS pictures, IEEE Trans. Computers,
c-21, 1972, 715~729.

J. 0. Limb and J. A. Murphy, Estimating the velocity of moving
images in television signals, Computer Graphics and Image
Processing, &, 1975, 311-329.




£681

£691

£701]

711

£723

£73]

[74]

€753

[761

€771

£78]

793

133

H. H. Nagel, Formation of an object concept by analysis of
systematic time variations in the optically perceptible
environment. Computer Graphics and Image Processing, 7, 1978,
149-194.

R. Jain and H. H. Nagel, On the analysis of accumulative
difference pictures from 1image sequences of real world scenes,
1EEE Trans. Pattern Analysis Machine Intelligence, Vol. PAMI-
Apr. 1979, 206-213.

R. Jain, D. Militzer, and H. H. Nagel, Separating nonstationary
from stationary scene components in a sequence of real world TV
images, 1977 Proc. 1JCAI, Clambridge, MA, Aug. 1977.

S. Ullman, The Interpretation of Visual Motion, Cambridge, MA,
MIT Press, 1979.

C. J. Jacobus, R. T. Chien and J. M. Selander, Motion detection
and analysis by matching graphs of intermediate-level primitives,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
PAMi-2, No. 6, Nov. 1980.

J. O'Rourke and N. I. Badler, Model-based image analysis of human

motion using constraint propagation, 1EEE Tran:,. Pattern Analysis

and Machine Intelligence, Vol. PAMI- -2, No. 6, Nov. 1980.

J. K. Tsotsos, etc., A framework for visual motion understanding,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. &, Nov. 1980.

J« W. Roach and J. K. Aggarwal, Determining the movement of
objects from a sequence of images, IEEE Trans. Pattern Analysis

and Machine Intelligence, Vol. PAMI-Z2, No. 6, Nov. 1980.

M. Yachida, M. lkeda and S. Tsuji, A plan-guided analysis of
cineangiograms for measurement of dynamic behavior of heart wall,
LEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. 6, Nov. 1980.

M. Yachida, M., Asada, and S. Tsuji, Automatic analysis of moving
objects from the records of natural processes.

S. Tsuji, M. Asada, and m. Yachida, Tracking and segmentation of
moving objects in dynamic Lline images, IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. PAMI-¢, No. 6, Nov. 1980.

J. W. Roach and J. K. Aggarwal, Computer tracking of objects
moving in space, IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. PAMI~1, No. 2, April 1979.

T I e ey Y v . mun +



£801

[81]

£82]

£83]

£841]

£85]

[861

£8rl

£88]

£89]

£901

€911

£921]

€931

134

W. B. Thompson, Combining motion and contrast for segmentation.
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.
PAMI-2, No. &6, Nov. 1980.

C. L. Fennema and W. B. Thompson, Velocity determination 1in
scenes rontaining several moving objects, Computer Graphics and
Image Processing, 9, 1979, 301-315.

A. Z. Meiri, On monocular perception of 3-D moving objects, I1EEE
Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-Z,
No. 6, Nov. 1980.

F. J. Maryanski and M. G. Thomason, Properties of stochastic
syntax-directed translation schemata, Intl. J. of Computer and
Information Science, Vol. 5, No. 2, 1979.

M. G. Thomason, Stochastic syntax-directed translation schemata
for correction of errors in context-free Languages, IEEE Trans.
Computer, C-24, 1975.

K. S. Fu and T. L. Booth, Grammatical inference: introduction and
survey - Part 1 and II, IEEE Trans. Sys. Man Cybernetics, Vol.
SMC~-5, No. 1 & 4, 1975.

J. M. Brayer and K. S. Fu, A note on the k-tail method of tree
grammar inference, IEEE Trans. System Man and Cybernetics, April
1977.

Barry Levine, Derivatives of tree sets with applications to
grammatical inference.

S. W. Zucker, R. A. Hummel and A. Rosenfeld, An application of
relaxation Llabeling to Lline and curve enhancement, IEEE Trans.
Comput., Vol. C-26, Apr. 1977.

W. Scacchi, Visual motion perception by intelligent systems,
Proc. Pattern Recog. Image Proc., Aug. 1979.

J. B. Garrison, et al., Quantifying regional wall motion and
thickening 1in two—-dimensional echocardiography with a computer-
aided contouring system, 1977 Proc. Computers in Cardiology.

P. D. Clayton, et al., A computer system for the cardiovascular
Laboratory, 1974 Proc. Computers in Cardiology.

B. R. Hieb, et al., A computerized system for segmental analysis
of sequential Lleft ventricular cineangiogram frames, 1976 Proc.
Computers in Cardiology.

P. H. Heintzen, et al., Automated video-angiocardiographicsh
image analysis, 1974 Proc. Computers in Cardiology.

]
1

-

L ~onmaditioutin _Strr_m'.-‘.d.

"7




135

[94]1 R. Balocchi, et al., A system for off-Line analysis of Left
ventricular angiographic 1images by the use of a minicomputer,
1977 Proc. Computer in Cardiology.

(951 R. W. Brower and G. T. Meester, Computer based methods for
quantifying regional. Left ventricular wall motion from
cineventriculograms, 1976 Proc. Computers in Cardiology.

[96] W. H. Tsai and K. S. Fu, Error-correcting isomophisms of
attributed retational graphs for pattern analysis, IEEE Trans.
System, Man and Cybernetics, Vol. SMC-9, No. 12, Dec. 1979.

[97] T. 1. Fan and K. S. Fu, A syntactic approabh to time-varying
image analysis, Computer Graphics Image Processing, 11, 1979.

{981 R. M. Haralick and J. S. Kartus, Arrangements, homomorphisms and
discrete relaxations, IEEE Trans. System, Man and Cybernetics,
Vol. SMC-8, Aug. 1978.

C993//I;//Bavtidis, Gramatical and graph theoretical analysis of

pictures, in Graphic languages, Nake and Rosenfeld, eds.
Amsterdam, North-Holland, 157%.

{1001 6. Y. Tang and T. S. Huang, A syntactic-semantic approach to
image understanding and creation, IEEE Trans. Pattern Analysis

Machine Intelligence, Vol. PAMI-1, No. 2, Apr. 1979.




ro.. -

F_B"—BZT(_)}RA;HFL_ h;v:.u)l- o o o j
i P X TV

A

A SYNTACTIC METHOD FOR TIME-VARYING PATTERN ANALYSIS i MEX_J98‘ . ""ﬁ
6.

R |

7.\ y—-——--- - T ot h o T e/ 8. Pertormary Org }

Tzu-{ J. Fan and K. S. Fu * TR- EE 8!-)0 7 ___l

h‘]‘ Pt _v ‘;n_-‘—'v.‘v—' :Tr."\'ll S gt A b T T T T - ’]0 Praooveor by 0, ( . ‘

Purdue University E— e - J

School of Electrical Engineering PR |
West Lafayette, IN 47907 i NOOO 14-C- 057h

12 1 ot D e e - T e T

Office of Naval Research » i

Y4 T T T -

e Are .. T T TTT T T T T T ST T T T T T T T e e

A syntactic method for the analysis of time-varying image patterns is proposed
and studied. This method utilizes translation schema to mode! the time-varying
properties of image patterns. A syntactic deformation model is first applied to trans-
form the i-th image into the (i+1)-th image of an image sequence. Then the concept
; of translation in formal language theory is used as a mechanism to characterize the
dynamic process of the image sequence. A formulation of stochastic translation is also
presented. A generalized syntax-directed tree translation model is proposed to handle
high-dimensional patterns. The generalized model is compared with thc conventional
i top~down and bottom-up tree translation models.

A traffic monitoring problem is analyzed using the proposed tree translation
model. Each input image is represented as a tree structure. The proposed tree
translation model is used to model the variation of image content between consecutive
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